
 International Journal of Technology and Emerging Sciences (IJTES)

 www.mapscipub.com

Volume 05 || Issue 02 || July 2025 || pp. 01-03 E-ISSN: 2583-1925

© 2025, IJTES | Volume 05 || Issue 02 || July 2025 | Page 1

Practicing of Green Coding: A Sustainable Software Development
Approach

Ms. Jasmeen Kaur

Assistant Professor, Dept. of Computer Science & Engineering, PTU, Punjab

---***---
Abstract - With the growing environmental impact of
computing, adopting more sustainable practices—referred to as
green computing—has become increasingly essential. Green
coding principles encompass intelligent workload orchestration,
aiming to minimize embedded carbon by optimizing workload
management and decreasing reliance on new hardware. A key
challenge in sustainable coding involves addressing poor coding
standards and a lack of knowledge in green software
development. The literature survey explores energy consumption
in different languages and adopt a two layered architecture for
sustainable software development.

Key Words: Green Coding , Green Programming Languages,
Carbon footprints, Sustainable Software Architecture ,Energy
Consumption

1. INTRODUCTION

When most people think about sustainability, they consider
conserving energy or recycling. But what about sustainability in
the digital world? Green software is a relatively fresh perspective
that refers to software practices and architecture, using software
to reduce power consumption, use hardware components built to
lower emissions, data center design, and climate science intersect
to try and make software engineering more sustainable. The
Principles of Green Software Engineering are a core set of
competencies needed to define, build and run green sustainable
software applications. [1]

2. GREEN CODING PRINCIPLES

Carbon Efficiency: Build applications that are carbon
efficient.

Electricity Efficiency: Build applications that are energy
efficient.

Carbon Awareness: Consume electricity with the lowest
carbon intensity.

Hardware Efficiency: Build applications that are hardware
efficient.

Measurement: Improve sustainability through measurement.

Climate Commitments: Defining the exact mechanism of
carbon reduction.

3. CARBON FOOTPRINTS

Recent research indicates that by the end of 2020, carbon
emissions could increase by up to 20%. A significant contributor
to this rise is the growing reliance on data centers that support
cloud computing architectures. These data centers, along with the
adoption of emerging technologies, are primarily responsible for
the surge in carbon footprints. [2] As they process vast amounts
of user-generated requests, they consume substantial energy most
of which is derived from non renewable sources. This high
energy consumption is a key driver of increased carbon
emissions. The findings indicate that large language models
(LLMs) currently lack the sustainability awareness necessary to
help reduce carbon emissions during their use.[3] Considering
the substantial carbon footprint involved in training these
models, it would be advantageous to minimize emissions during
their deployment.

4. GREEN DATA MINING AND INFORMATION
RETRIEVAL

Green data mining and eco-friendly information retrieval focus
on minimizing the environmental impact of data processing
activities while still extracting valuable insights. [4] These
practices involve implementing strategies for managing carbon
emissions and integrating renewable energy sources into
operational frameworks. Additionally, the responsible disposal of
electronic waste generated through data mining processes is
considered an essential aspect of sustainable information retrieval
and analytics.

Now a days , Python has quickly become the go-to language for
data analysis due to its versatility and ease of use but a paper
cited by Electronic Trading Technology states that Python can
use significantly more energy (e.g., 45 times as much as C++) to
perform the same task.

5. CHOOSE THE RIGHT PROGRAMMING LANGUAGE

Another important factor influencing computing emissions is the
choice of programming language. The energy efficiency of a
language can vary based on its design and implementation. [5]
For instance, certain languages are specifically built to support
concurrent programming or parallelism, allowing multiple tasks
to be executed at the same time. This capability helps lower
energy consumption by making more efficient use of CPU
resources.

 International Journal of Technology and Emerging Sciences (IJTES)

 www.mapscipub.com

Volume 05 || Issue 02 || July 2025 || pp. 01-03 E-ISSN: 2583-1925

© 2025, IJTES | Volume 05 || Issue 02 || July 2025 | Page 2

Energy efficiency should be a key consideration during code
development. This includes measuring the program’s energy
consumption, striking a balance between performance and energy
savings, and selecting programming languages known for lower
energy usage (such as Java, Go, C#, C++, etc.).[6]

6. LAYERED MODEL FOR ENVIRONMENTALLY

CONSCIOUS SOFTWARE DEVELOPMENT

Mahmoud and Ahmad proposed a two-level model which aimed
at promoting sustainability throughout the software development
life cycle [7]. The first level outlines guidelines for creating green
software by integrating sequential, iterative, and agile
development approaches. This level encompasses several stages:

Requirements gathering, where developers assess the
necessity and potential energy efficiency of proposed systems;

Design and implementation, which prioritize the use of
efficient data structures, algorithms, and system architectures;

Testing, which not only verifies functionality but also
evaluates environmental impact and fault tolerance;

Green analysis, focusing on metrics such as CPU usage to
measure energy consumption;

Usage, emphasizing energy-efficient resource management
influenced by user interactions;

Maintenance, which supports sustainability as new features
are introduced;

Disposal, encouraging environmentally responsible recycling
of outdated software and hardware.

The second level focuses on software tools that improve
energy efficiency, including operating system frameworks, fine-
grained computing techniques, performance metrics, energy
allocation algorithms, and virtualization strategies. These tools
enable software developers to optimize energy consumption,
thereby promoting environmental sustainability.

This comprehensive approach ensures that sustainability is
embedded at every stage of the software life cycle.

7. ENERGY EFFICIENCY OF ALGORITHMS IN DIFFERENT

LANGUAGES

Research findings show that an algorithm's energy consumption
increases in line with its algorithmic complexity. This means that
as the input size grows, energy usage scales similarly. For
example, if an algorithm has a time complexity of O(n²),
doubling the input size will typically result in four times the
energy consumption.

Different programming languages exhibit varying levels of
energy consumption, influenced by factors such as abstraction
layers, compiler optimizations, and implementation details.[8]
From the result collected we found that compiled and semi-
compiled languages such as C++ and Java are generally more
energy-efficient than interpreted languages like Python, R, and
MATLAB, with energy consumption in interpreted languages

reaching up to 54 times higher in some cases and secondly the
energy efficiency of programming languages can differ
significantly depending on whether the task involves training or
inference .As a result, selecting the appropriate programming
language is crucial for energy-efficient development.[9]

8. DEVELOPER AWARENESS AND WORKPLACE
PRIORITIZATION OF SUSTAINABLE CODING
PRACTICES

The survey results indicate that the terms “green code” and
“green coding” are not widely recognized, with only about 30%
of respondents familiar with them. Most professional respondents
reported that their workplaces do not actively discuss
environmentally friendly software development. However, a
significant number expressed a desire for sustainability to be
given more attention. Just over one-third of participants said they
consider energy efficiency when writing code, while slightly less
than one-quarter take energy consumption into account when
selecting tools and techniques for their projects. [10]

9. CONCLUSION

This research serves as a valuable reference for developers
seeking to implement more sustainable coding practices. By
highlighting the environmental advantages of optimized code, the
study promotes a shift toward greater sustainability within the
software industry. Creating energy-efficient software is a
complex task that demands a mindset shift from both developers
and designers. Advancing sustainability requires coordinated
efforts at multiple levels. Developers can help lower carbon
emissions by following best practices and understanding the
environmental impact of their decisions. At the organizational
level, promoting sustainability involves implementing a green
coding framework and assessing performance not only by
traditional metrics but also by energy efficiency.

By adopting green software development practices, developers
can play a key role in reducing the carbon footprint of digital
solutions through improved energy use, efficient resource
management, sustainable coding methods, and user awareness.
Every contribution matters in this collective mission—even a
single optimization can have a meaningful environmental impact.

Disclosure: I certify that all content, data, and organizational
references in this manuscript have been included with proper
authorization and consent. I accept full legal and ethical
responsibility for the accuracy, originality, and integrity of the
work. The journal, publisher, and editorial board assume no
liability for any disputes arising from the submitted material.

REFERENCES

[1]. Green Software Engineering Full Guide, Feb-2023,
Fuller Brand Communication.

[2]. S Thakur and A Chaurasia. Towards Green Cloud
Computing: Impact of carbon footprint on
environment, 2016, IEEE explore.

 International Journal of Technology and Emerging Sciences (IJTES)

 www.mapscipub.com

Volume 05 || Issue 02 || July 2025 || pp. 01-03 E-ISSN: 2583-1925

© 2025, IJTES | Volume 05 || Issue 02 || July 2025 | Page 3

[3]. Vartziotis, Tina et al., 2024, Learn to Code Sustainably:
An Empirical Study on Green Code Generation. Cornell
University.

 https://doi.org/10.48550/arXiv.2403.03344
[4]. S. G. Paul et al., "A Comprehensive Review of Green

Computing: Past, Present, and Future Research," in IEEE
Access, vol. 11, pp. 87445-87494, 2023, doi:
10.1109/ACCESS.2023.3304332.

[5]. Mahmudova SH. (2024). Exploring international practices
in the field of green coding. Danish scientific journal, 87.
https://doi.org/10.5281/zenodo.13620831

[6]. Cassel, D. Which programming languages use the least
 Electricity?
[7]. Sara S.Mahmoud and Imtiaz Ahmad, A Green Model
 For Sustainable Software Engineering .2013
 International Journal of Software Engineering and Its
 Applications Vol.7, No.4, pp.55-74.
[8]. T. Khudher, ‘Green Coding : Energy consumption in

different programming languages and algorithms’,
Dissertation, 2024.

[9]. Niccol` o Marini at el .Green AI: Which Programming
Language Consumes the Most?, 2025.
https://doi.org/10.48550/arXiv.2501.14776

[10]. H Ritchie, M Roser, Overview of Global Energy,
 Accessed 2022-01-20

