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Abstract: Transcriptome profiling approaches in RNA-Seq 

can serve to reveal genes whose differential expression 

predicts its concurrent association with  various cancer 

pathogenesis and shorter survival rate. By 

analyzingtranscriptomic data from tumor samples, 

researchers can identify genes whose expression levels 

correlate with disease progression. Out of various severe 

cancer categories exocrine pancreatic cancer remains a 

devastating malignancy with a poor prognosis. Recent 

advances with the introduction of powerful next-generation 

sequencing (NGS) technology RNA sequencing,  the 

identification of genes can lead to the development of drugs or 

pharmacological agents targeting the pancreatic cancer can 

be identified more effeciently. This knowledge base can 

empower the development of non-invasive screening tools for 

early disease detection and inform the selection of promising 

therapeutic targets, including the identification of molecular 

subtypes for personalized medicine approaches. Overall, 

RNA-Seq-based transcriptome profiling holds immense 

potential for advancing our understanding and therapeutic 

management of exocrine pancreatic cancer. This review 

highlights the current approaches of NGS based 

transcriptome profiling to expand our understanding of 

exocrine pancreatic cancer by identifying variational gene 

expression patterns, molecular subtypes, therapeutic targets 

and dysregulated pathways, which will add new perspective 

for future researchers  to explore immense potential and 

understanding of therapeutic management of exocrine 

pancreatic cancer and drug target application research. 
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1. Introduction  

Pancreatic cancer is recognized as one of the deadliest illness 

with comparable rates of mortality and morbidity. Its 

occurrence is on the rise, yet the five-year relative survival 

rate is still the lowest among major cancers [1]. This 

aggressive cancer is marked by a diverse stromal 

microenvironment, leading to inadequate tumor 

vascularization and a complicated signaling network that 

regulates tumor onset, progression, and persistence [2, 3]. 

Risk factors encompass smoking, alcohol misuse, obesity or 

metabolic syndrome, aging, and occupational exposure [4, 5]. 

Pancreatic cancer is also believed to have a familial 

component. A retrospective analysis involving 175 families 

with a history of pancreatic cancer, genetic mutations were 

detected in 28% of family cases [6].The genes frequently 

linked with pathogenic germline alterations encompass 

BRCA1, BRCA2, ATM, PALB2, MLH1, MSH2, MSH6, 

PMS2, CDKN2A, and TP53 [7].  

RNA sequencing has revolutionized the study of 

transcriptomes, offering significant advantages over previous 

methods such as Sanger sequencing and microarrays. RNA-

Seq provides higher coverage by capturing a more 

comprehensive view of the transcriptome, detecting both 
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highly abundant and rare transcripts with greater sensitivity, 

and greater resolution by allowing researchers to quantify 

gene expression levels more precisely, which is crucial for 

understanding the dynamic nature of gene expression. Further, 

the data generated by RNA-Seq facilitates the discovery of 

novel transcripts, identification of alternatively spliced genes, 

and detection of allele-specific expressions [8]. 

The primary objective of transcriptomics are: to compile all 

types of transcripts, which includes mRNAs, non-coding 

RNAs and small RNAs, to ascertain the transcriptional 

organization of genes, including their initiation sites, 5’ and 3’ 

ends, splicing patterns, and other post-transcriptional 

modifications. Lastly, transcriptomics aims to measure 

variations in the expression levels of individual transcript 

throughout development and under varying conditions [9]. 

With the advancement in sequencing technology and “omics” 

analysis, several novel circulating biomarkers with 

considerable diagnostic potential have been identified, 

including metabolites, cell-free DNA (cfDNA), noncoding 

RNA, and exosomes[10]. 

 

Recurrent mutations in genes like KRAS, TP53, CDKN2A, 

and SMAD4 have been found in pancreatic cancer in previous 

studies. These discoveries have enhanced our knowledge of 

how this cancer type develops and advances [11,12]. But 

pancreatic cancer lacks a molecular taxonomy to guide 

treatments, unlike other cancers such as breast, prostate, 

gastric, and colorectal [13]. Tailoring treatment based on 

molecular targets may enhance outcomes for patients with a 

grim prognosis. The genetic makeup of pancreatic ductal 

adenocarcinoma is highly diverse, with most targetable 

genetic abnormalities being present in less than 10% of cases 

[14]. Next generation sequencing offers unparalleled 

possibilities by revealing genetic pathways driving cancer and 

is thereby advancing personalized medicine [15]. Personalized 

cancer therapy considers patients' molecular profiles to group 

them for better treatment outcomes [16, 17]. 

2. Next-generation Sequencing: RNA Seq and 

its applications in pancreatic cancer 

The year 2005 witnessed the emergence of a new generation 

of sequencing technologies [18, 19].These advanced 

technologies are referred to as next-generation sequencing 

(NGS), 'high-throughput' (or even 'ultrahigh-throughput') 

sequencing, 'ultra-deep' sequencing, or 'massively parallel 

[20], which can efficiently analyze large number of shorter 

DNA sequences. Since the completion of the Human Genome 

Project, there have been significant advancements in genome 

sequencing technologies, ushering in a new era of “omics” 

science, fundamentally transforming the investigation of 

malignant tumors. The advent of NGS has led to enhanced 

efficiency and decreased expenses, significantly easing the 

process of cancer genomics exploration and their application 

in clinical settings [21].  Commercially available 

commercially available platforms include: 454 (Roche), 

Genome Analyzer (Illumina/Solexa) and ABI-SOLiD 

(Applied Biosystems)  

A comprehensive examination of various NGS platforms 

utilizing distinct sequencing technologies is outside the scope 

of this article. Since this article revolves around transcriptome 

profiling it will focus on RNA-Seq which allows for a 

comprehensive assessment of the transcriptome, providing 

information on the expression levels of thousands of genes 

simultaneously.  Next-generation technologies are 

increasingly utilized not just for examining stable genomes 

but also for exploring dynamic transcriptomes through a 

technique known as RNA-Seq, [22]also called short read 

massively parallel sequencing. The method of gene discovery 

has undergone a revolution with the advent of RNA-Seq, a 

high-throughput assay for sequencing transcribed genes. The 

potential of RNA-Seq lies in its capacity to provide extensive 

coverage of the cell’s entire transcriptome using a single 

operation of a high throughput sequencer like the 

IlluminaHiseq, capable of yielding up to 200 billion bases in a 

single run [23].  

In a standard RNA-Seq experimental workflow, the isolated 

RNA is converted into complementary DNA (cDNA), 

proceeding with the preparation of sequencing library 

followed by sequencing of the library on a next-generation 

sequencing platform Compared to microarrays, RNA-Seq 

offers several advantages for studying differential gene 

expression  because it isn’t restricted by hybridization issues 
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such as background noise and saturation, or with problems 

related to probe sets such as inaccurate annotation and isoform 

coverage. It’s also better at finding genes with low or high 

expression levels and has a wider range of detection [24]. 

Advancements in next-generation genome sequencing (NGS) 

have revitalized the field by aiding the discovery of molecular 

changes that drive pancreatic cancer progression. Sequencing 

has shown that pancreatic cancer features highly 

heterogeneous tumors resistant to conventional chemotherapy 

and radiation therapy [25].  

Most samples within current tumorbiobanks consist of 

surgical specimens derived from primary tumors but for 

understanding various aspects of tumor biology, which 

includes intratumoral heterogeneity, tumor and host 

interactions, and any changes in disease during therapy, 

creates the need for biospecimens to be sourced from both the 

primary tumor and those that represent the patient’s condition 

in specific contexts. Next-generation ‘omics’ technologies 

enable comprehensive analysis of tumors[26].The utilization 

of NGS is on the rise for the detection of diagnostic, 

prognostic, and predictive mutations within numerous 

malignant tumors, leading to substantial enhancement in 

treatment outcomes.  

2.1 Transcriptome profiling and Expression Analysis  

The transcriptome is composed of all the RNAs including 

mainly the mRNAs, rRNAs, and tRNAs. Moreover, other 

RNA molecules have also been found which do not encode for 

proteins, referred to as non-coding RNAs(ncRNAs) and has 

recently been proven to have regulatory functions that impact 

both gene expression and protein function [27]. The 

significance of non-coding RNAs, alternative splicing, and 

isoform stability in modulating oncogene expression has 

become increasingly recognized. This focus is crucial because 

transcriptional addiction is a fundamental dependency of 

cancer [28]. A recent study outlined the tumor-suppressing 

function of the non-coding RNA LINC00673 in PDAC 

[29].The cancer transcriptome comprises of RNA 

modifications, including alterations in messenger RNA’s, 

which when combined with the genome, offer a holistic 

understanding of  patient’s cancer, improving clinical 

decision-making [30].   

To initiate an investigation into the genomic architecture of 

pancreatic cancer JinpingJia and colleagues, employed high-

throughput sequencing techniques to categorize and compare 

transcribed regions as well as potential regulatory elements, in 

two human cell lines originating from both cancerous 

pancreatic tissues and healthy tissues. Through RNA 

sequencing they detected 2,146 genes exhibiting differential 

expression in those cell lines, showing enrichment in 

pathways and biological processes related to cancer, such as 

cell adhesion, growth factor and receptor activity, signaling, 

transcription, and differentiation. Paired-end sequencing reads 

were aligned to the RefSeq database (National Centre for 

Biotechnology Information (NCBI) Build 37) utilizing the 

Burrows-Wheeler Aligner (BWA) software [31].  

Another study by Mao et al. utilized RNA-Seq to 

comprehensively characterize the pancreatic ductal 

adenocarcinoma (PDAC) transcriptome, identifying 2,736 

DEGs, including 1,554 upregulated genes, 1,182 

downregulated genes, and 6 microRNAs [32]. This further 

reinforces the value of RNA-Seq for deciphering the 

pancreatic cancer transcriptome. Furthermore, Kirby et al. 

demonstrated a correlation between gene expression patterns 

and survival outcomes in pancreatic cancer patients, 

highlighting the potential of RNA profiling as a prognostic 

indicator [33]. Their analysis identified 323 transcripts 

correlating with survival in the pancreatic patient cohort. 

Certain survival-associated transcripts were found to confer 

resistance to gemcitabine treatment in vitro, suggesting that 

gene expression profiles may influence patient treatment by 

identifying those who may respond better to non-gemcitabine 

therapies. 

One significant advantage of RNA-Seq is its cost-

effectiveness compared to whole-genome sequencing [34]. 

This has enabled researchers to combine RNA-Seq with 

innovative bioinformatics methods to detect gene fusions at 

the transcript level using a paired-end RNA sequencing 

strategy [34]. Moving beyond mRNA, a comprehensive next-
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generation sequencing analysis of the PDAC transcriptome by 

Muller et al. encompassed both coding and non-coding 

regions in six tumor tissues and five control tissues [35]. This 

study revealed novel signatures of long non-coding RNAs 

(lncRNAs), small nucleolar RNAs (snoRNAs), and mRNAs 

associated with PDAC [35, 36, 37].  The researchers  also 

identified 13,614 highly expressed coding genes and 432 

lncRNAs, with 1,961 mRNAs and 43 lncRNAs exhibiting 

significant differential expression between cancerous and 

control tissues [35]. 

3. Identification of molecular subtypes  

Pancreatic cancer has been categorized into four primary 

molecular subtypes according to the expression of 

transcription factors and their downstream targets, or by 

analyzing the distribution of structural rearrangements [13]. 

Transcriptomic profiling allows for the classification of 

tumors based on gene expression patterns, providing insights 

into the biology and behavior of different subtypes. Studies on 

the transcriptional networks, Collisson et al. identified three 

molecular subtypes: classical, quasi-mesenchymal (QM) and 

an exocrine-like subtype. The classical subtype is defined by 

transcription factor GATA6 expression, KRAS dependency, 

and improved survival. The QM subtype is linked to high 

tumor grade and worse survival [38].   

A significant characteristic of PDAC is its extensive stromal 

involvement, complicating the acquisition of accurate 

molecular data specific to the tumor. The analysis of PDAC 

tumors is hindered due to restricted tumor cellularity and the 

abundance of stroma intertwined with typical endocrine and 

exocrine cells. Through digital segregation of tumor, stroma, 

and normal gene expression, two tumor-specific subtypes have 

been discovered and confirmed, one of which is a "basal-like" 

subtype associated with a poorer prognosis and shares 

molecular similarities with basal tumors found in bladder and 

breast cancer.  

Additionally, distinct "normal" and "activated '' stromal 

subtypes have been characterized, each possessing 

independent prognostic implications. Their results indicate 

that RNA subtypes could more accurately depict the molecular 

characteristics of PDAC and their impact on patient prognosis. 

They hypothesize that the RNA subtypes identified by them 

could potentially signify the overall impact of somatic 

mutations, as well as underscore the significance of 

tumorstroma. These new findings regarding the molecular 

makeup of PDAC could potentially be utilized for 

customizing treatments. Furthermore, an understanding of 

these subtypes and their prognostic significance might offer 

guidance in a clinical environment where the selection and 

timing play a crucial role [39].  

Genomic analysis of 456 pancreatic ductal adenocarcinomas 

performed by Bailey et al, defined molecular subtypes in 

which RNA expression profiles were used to define the 

subtypes associated with distinct histopathological 

characteristics and differential survival. The initial application 

of unsupervised clustering on RNA-seq data for 96 tumors 

characterized by a significant epithelial presence (≥40%) to 

equilibrate stromal gene expression resulted in the 

identification of four distinct and consistent classes. These 

were named, squamous, pancreatic progenitor, immunogenic, 

and aberrantly differentiated endocrine exocrine (ADEX). The 

squamous subtype is characterized by TP53 and KDM6A 

mutations, while the pancreatic progenitor subtype expresses 

genes involved in early pancreatic development. The ADEX 

subtype displays upregulation of genes related to KRAS 

activation, exocrine, and endocrine differentiation pathways. 

Immunogenic tumors contain upregulated immune networks, 

indicating pathways involved in acquired immune suppression 

[40].  

It’s important to highlight that identifying an altered 

transcriptome doesn’t necessarily guarantee its phenotypic 

translation and manifestation. Therefore, it is believed that the 

integration of various omics technologies could provide a 

more comprehensive profile of changes for classifying PDAC 

patients [41].  

4. Pathway Analysis and Therapeutic Target 

Identification for Personalized treatments 
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Figure-1: The 12 linked core pathways reported with genes 
which are genetically altered in most pancreatic cancer cases

Genetically modified core pathways and regulatory processes 

are only noticeable when the genome's coding regions are 

thoroughly examined. Mutational dysregulation of these core 

pathways and processes can elucidate the key aspects of 

pancreatic tumorigenesis. A group of 12 cellular signaling 

pathways and processes are known to be genetically modified 

in most pancreatic cancer research [42] as represe

Figure 1. 

A study on utilized microfluidics technology, to isolate 

circulating tumor cells (CTCs) from a genetically engineered 

mouse model, enabling the generation of an unbiased RNA 

sequencing profile to identify CTC-specific expression 

patterns. Their findings indicate that non

Wntsignaling pathways might play a crucial role in promoting 

metastasis in human pancreatic cancer. Expression of Wnt2 in 

pancreatic cancer cells inhibitsanoikis, promotes anchorage

independent sphere formation and increases metastatic 

potential in vivo, indicating its significance in cancer 

progression. A panel of inhibitors of Wnt-related pathways 

were tested to find small molecule inhibitors that can suppress 

the Wnt2 effect on anoikis. 5Z-7-Oxozeaenol, Map3k7 

inhibitor eliminated Wnt2-induced tumor spheres without 

impacting the formation of baseline spheres. Inhibition of 

Map3k7 (Tak1) kinase, which suppresses the effects of Wnt2, 

could serve as a potential drug target for metastasis 

suppression. Tak1 inhibition suppressed Fn1 expression as 

well and reversed the prosurvival phenotype induced by Wnt2, 
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hibition suppressed Fn1 expression as 

well and reversed the prosurvival phenotype induced by Wnt2, 

leading to decreased tumor sphere formation and metastases. 

The results suggest that Wnt2 plays a role in transmitting 

survival signals related to metastasis

partially on a Tak1-Fn1 signaling pathway. Formation of non

adherent tumour spheres in human pancreatic cancer cells 

involves upregulation of various Wnt genes. Pancreatic 

circulating tumour cells (CTCs) in 5 out of 11 cases show 

enrichment in Wntsignaling. Molecular analysis of CTCs can 

help in identification of potential therapeutic targets for 

inhibiting cancer metastasis [43]. 

The abnormal activation of the Wnt pathway is significantly 

linked to the formation of various malignant tu

[44]. The DKK4 gene is regulated by the Wnt/β

signaling pathway, and its protein can suppress the pathway 

activity [45, 46] and the disruption of this feedback 

mechanism in certain tumors could stimulate tumor 

development [47, 48]. Ouyang Y and colleagues found that 

DKK4 is significantly upregulated in pancreatic cancer tissues 

and explored the correlation between DKK4, and pancreatic 

cancer progression using high-throughput RNA sequencing 

and found that DKK4 is linked to tumor format

development, and immune inflammation. The MAPK, Rap1, 

TNF, and TGF-beta signaling pathways showed notable 

activation, linked to tumor, immunity, and inflammation. 

Additionally, construction of pathway interactions reveals 

how enriched pathways connect to show the gene profile 

affected by DKK4 in pancreatic cancer cells. And they 

discovered that the majority of significantly activated signal 

transduction pathways were connected, directly or indirectly, 

to the MAPK signalingpathway.Theseinclude the

beta, Rap1, Ras, Hippo, FoxOsignaling pathways, and others 

associated with cancer. Nevertheless, the MAPK signaling 

pathway is the primary signal transduction pathway in DKK4

overexpressing pancreatic cancer cells, indicating that DKK4 

could contribute to pancreatic cancer development by 

activating this pathway abnormally. The outcomes of GO and 

pathway analyses, alongside differentially expressed gene 

interaction network, pinpointed genes linked to tumor 

development such as MAPK3, PIK3R3, VAV3, J

Notch3 [49]. 
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5. Identifying potential therapeutic targets is 

essential for precision therapy 

Certain research studies highlighted kinases as a potential 

target for precision therapy by analyzing RNA-sequencing 

data of tumors. Pancreatic cancer cell lines responded to 

targeting specific kinases like EGFR, PLK2, MET, and 

AKT2, suggesting them as possible therapeutic targets.  The 

study expanded on nominating outlier kinases specific to 

pancreatic cancer, known for poor prognosis and resistance to 

standard treatments. The pancreatic cancer sanctuary, 

including tumorstroma and immune cells, highlights the 

demand for the exploration of effective targets. Knockdown 

inhibition of outlier kinases shows promising results in 

pancreatic cancer cell lines. Matching actionable targets with 

suitable therapeutics is crucial.  

Targeting MET was more effective in pancreatic cancer cell 

lines, directed the significance of aligning specific targets 

from samples with suitable therapeutics. The influential 

effects of choosing unique outlier kinases along with the 

oncogenic KRAS mutation, which appears in almost all 

pancreatic cancer cases and after its knockdown, phospho-

ERK levels decreased in KRAS-dependent cells (L3.3 and 

MIA-PaCa-2) but not in KRAS-independent PANC-1 cells. 

This suggested that in PANC-1 cells, ERK activity might be 

maintained through alternative pathways [50]. 

The PI3K-AKT signaling pathway also plays a crucial role in 

the development of pancreatic cancer. AKT kinase enhances 

cell survival, initiates cell division, boosts metabolism, 

supports growth, stimulates angiogenesis, and aids in DNA 

repair by phosphorylating various proteins [51]. The PI3K-

AKT pathway is influenced by MUC16 [52], FAM83A [53], 

and NT5E [54], which can serve to be potential therapeutic 

targets. But MET is presently known to be the most critical 

gene in this current context of study. The MET proto-

oncogene produces the protein MET (c-MET), a membrane 

tyrosine kinase receptor. MET first binds to its ligand, 

hepatocyte growth factor (HGF), which is secreted by stromal 

cells. Upon binding, HGF dimerizes, activating MET, which 

then can trigger the PI3K/AKTpathway[55]. 

Researches also reported key oncogene in PDAC, RAS, which 

significantly influences signaling pathways that regulate cell 

growth and differentiation, promoting cell proliferation and 

differentiation while inhibiting apoptosis. Abnormally 

activated RAS initiates signaling through downstream 

pathways such as RAF/MEK/ERK, PI3K/PDK1/AKT/mTOR, 

RALGDS, TIAM1, and RIN1 [56].Activated KRAS reported 

to boost the natural expression of the upstream protein, 

epidermal growth factor receptor (EGFR), leading to its 

excessive activation [57,58]. Elevated RAS levels and 

heightened EGFR activity significantly amplify MEK/ERK 

activity, resulting in intraepithelial neoplasia [59].   In a phase 

II trial, the EGFR inhibitor nimotuzumab extended the overall 

survival (OS) of patients with advanced or metastatic 

pancreatic cancer, improving median OS from 6.0 to 8.6 

months. Also, patients with KRAS wild-type PDAC  resulted 

in greater benefits, with median OS increasing from 5.6 to 

11.6 months compared to those with KRAS mutant PDAC 

[60].  

TP53, a tumor suppressor gene, is the most frequently 

inactivated in PDAC, with about 70% of patients showing 

alterations in this gene.[61, 62].Targeting murine double 

minute 2 (MDM2) is another developing strategy for treating 

tumors with TP53 mutations.  MDM2 counteracts p53 either 

through direct interaction or by promoting its degradation via 

the ubiquitin pathway [63]. Thus, inhibiting MDM2 could 

enhance p53 activity and help control cancers with p53 

mutations [64]. Butthere is a current shortage of clinical trials 

evaluating MDM2 inhibitors in patients with PDAC.  

Mutations in tumour suppressors, including TP53, SMAD4, 

and CDKN2A, contribute to tumorigenesis in PDAC. These 

molecules are involved in complex molecular networks and 

have important roles in tumor development and advancement. 

Various strategies can be used to target these proteins 

effectively due to their significance.  By employing next-

generation sequencing (NGS), these abnormal changes can be 

detected, allowing for the development of strategies  and 

systematic approaches various standard pipelines have now 

been incorporated that selectively eliminate cancer cells in 

PDAC patients [65]as shown in Figure 2.  
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6. RNA-Seq Analysis  

In order to address wide challenges in exocrine pancratic 

cancer new approaches for accurate assessment and vast 

datasets analysis, scientists using bioinformatics principles 

and constraints involved in the sophisticated process of RNA-

Seq analysis [66].  RNA-Seq involves the integration of high-

throughput sequencing with computational approaches to 

capture and measure transcripts within an RNA sample [67]. 

A typical RNA-Seq workflow often includes the following 

five sequential steps: 1) initially raw data is preprocessed, 2) 

followed by aligning reads, 3) with reconstruction of 

transcriptome, 4) quantifying expression levels, 5) and lastly, 

conducting differential expression analysis [68]. 

At each of these stages, it is essential to implement specific 

measures to assess the quality of the data. Quality assessment 

for the raw reads includes examining sequence quality, GC 

content, adaptor presence, overrepresented k-mers, and 

duplicated reads to identify potential sequencing errors, PCR 

artifacts or contaminations [69]. The objective of FASTQC is 

to offer a straightforward approach for conducting quality 

control assessments on raw sequence data obtained from high-

throughput sequencing pipelines. It is a widely utilized tool 

for conducting these analyses on Illuminareads[70]. For 

increased mapping efficiency it is necessary for sequences to 

have undergone appropriate trimming to eliminate adaptor 

sequences and low-quality tails. Trimmomatic encompasses 

several processing steps for read trimming and filtering, with 

its primary algorithmic advancements focusing on the 

detection of adapter sequences and quality filtering [71].   

In RNA-Seq, evaluating expression levels involves aligning 

relatively short sequencing reads to either a reference genome 

or a set of transcripts with the help of an alignment tool. The 

quantification of reads aligned to individual genes is then 

utilized for estimating expression levels [72]. Alignment in 

RNA sequencing poses significant complexity due to RNA 

splicing. Several RNA-Seq algorithms exist, claiming to align 

sequencing reads with precision and effectiveness, alongside 

the ability to detect splice junctions [73]. Certain aligners, like 

HISAT2, STAR [74], and TopHat2 [75], are specifically 

developed to adeptly identify splice junctions [76]. Unspliced 

read aligners include Stampy [77] and MAQ [78], which 

identify matches for short subsequences whereas Bowtie [79] 

and Burrows wheeler Aligner (BWA) [80] are utilized to find 

exact matches.  

After aligning reads to a particular transcript on a reference 

sequence, the next step involves allocating them to genes or 

transcripts, to find out abundance measures. The quantity of 

reads aligned is then utilized for estimating expression levels 

associated with that gene.   

The second step after read mapping, involves detecting active 

or expressed genes and isoforms, also called transcriptome 

reconstruction, and it's a challenging computational task due to 

three primary factors. Firstly, gene expression levels vary 

widely, with certain genes being represented by limited 

number of reads. Secondly, the reads come from both the fully 

processed mRNA (exons only) and the partially spliced 

precursor RNA (containing intronic sequences), posing 

difficulties in identifying mature or fully processed transcripts. 

Thirdly, short reads and multiple gene isoforms make it 

complicated to match each read to its originating isoform [81]. 

Both cufflinks [82] and iReckon [83] utilize established gene 

structures to aid in transcript assembly, potentially improving 

the accuracy of exon and transcript boundary determination 

whereas Oases [84], a de novo assembler, can be used to 

address partial or low-quality genome builds [85]. Various 

other transcript assemblers like Scripture [86] and StringTie 

[87] are also employed in genome-guided reconstruction. In 

contrast genome-independent algorithms also include Trinity 

[88] and TransAbyss [89] as de novo assemblers.   

After mapping, the reads that align to coding units like exons, 

transcripts, or genes are counted in a step called counting or 

quantification, to estimate their expression levels. This is 

followed by normalization to eliminate sequencing bias. 

Commonly used quantification tools include HTSeq, which 

quantifies gene expression by counting mapped reads to exons 

without transcript assembly.  [90]; Cufflinks [91], eXpress 

[92], MISO [93] and RSEM [94], are used for transcript level 

quantification.Alignment-free tools like Sailfish [95], Kallisto 

[96], and Salmon [97] directly associate sequencing reads with 
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transcripts, eliminating the need for a separate quantification 

step. They perform well with more abundant transcripts but 

are less precise in quantifying low-abundance or short 

transcripts.  

For precise gene expression estimation, read counts need to be 

normalized. The RPKM (reads per kilobase of transcript per 

million mapped reads) metric normalizes or adjusts a 

transcript's read count for the gene length and the total number 

of reads mapped in the sample. For paired-end reads, the 

FPKM (fragments per kilobase of transcript per million 

mapped reads) metric further refines this by accounting for the 

relationship between paired-end reads in the RPKM 

calculation [84]. One approach employed in the alternative 

expression analysis by RNA sequencing is Alexa-Seq method, 

which estimates isoform-level expression by counting reads 

that map uniquely to one isoform. While effective for some 

alternatively spliced genes, it is less successful for genes 

lacking unique exons to gauge isoform expression [98].  

Following normalization, when sequence is converted into an 

expression matrix, the data can be modeled to identify which 

transcript features likely changed in expression level that is to 

identify differentially expressed genes. Tools like edgeR [99], 

DESeq2 [100], and limma+voom [101] are employed for this 

purpose as shown in Figure 3.  

7. Challenges and Future Directions  

The primary challenge for biologists in this domain is to 

identify the causes of pancreatic cancer, recognizing potential 

variations in drivers in distinct cases. Categorizing pancreatic 

cancers based on drivers has facilitated the evaluation of 

personalized treatment in animal models and human patients 

[101]The classification of PDAC into subtypes has clinical 

potential for precision oncology by identifying patients who 

might benefit from specific treatments and identifying 

therapeutic targets [102]. 

It's important to integrate or combine both transcriptomic and 

genomic analyses to identify and explore PDAC subtypes, as 

their mutational and transcriptional profiles differ. Integrating 

these analyses could provide a more comprehensive view of 

PDAC's heterogeneity [103,104].  With the progression of 

sequencing technologies, computational tools must also 

advance to address emerging technical challenges and support 

new applications. Further As laboratory techniques improve to 

allow sequencing of tiny RNA amounts, sophisticated 

statistical methods will be required to distinguish technical 

noise from significant biological variation. These 

advancements will enhance transcriptome analysis in rare cell 

types and states, helping researchers map biological networks 

at the cellular level [105]. 

8. Conclusion 

Pancreatic adenocarcinoma is a highly lethal disease which is 

found as a tumor in the exocrine part of the pancreas and is the 

most common among all pancreatic cancers. Due to its 

aggressive nature, poor prognosis and limited treatment 

options, this pancreatic cancer remains a significant clinical 

challenge with most of them being resistant to standard 

treatments such as radiation, chemotherapy and surgery. 

Understanding its molecular landscape on a deeper level is 

essential for the development of suitable prognostic and 

therapeutic modalities. Transcriptomic profiling with RNA-

Seq revolutionized comprehension of exocrine pancreatic 

cancer, offering new perspectives on its molecular 

characteristics, tumor diversity, and treatment prospects. 

Persistent endeavors to tackle obstacles and utilize RNA-Seq 

information for precision oncology show potential for 

enhancing diagnosis, prognosis, and therapy in pancreatic 

cancer. The emergence of RNA-Seq has transformed 

transcriptomic profiling by allowing in-depth analysis of gene 

expression, alternative splicing, and non-coding RNA in 

exocrine pancreatic cancer. This method provides unparalleled 

understanding of the molecular mechanisms behind 

tumorigenesis, progression, and resistance to treatment. 

Furthermore, with the identification of differentially expressed 

genes using RNA Seq approaches is crucial for developing 

new markers for both future detection and treatments will aid 

future researchers and scientists adding new dimensions of 

solutions in near future to pancreatic cancer research. 
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These steps are common in almost all RNA

alignment, transcriptome reconstruction, expression quantification, and differential expression

  

Volume: 04 || Issue: 02 || April 2024 

in pathway analysis and therapeutic target identification for precision medicine

 

Seq data analysis workflow. This figure illustrates tools and processes involved in RNA

ost all RNA-Seq data analysis which includes, quality control, per-processing, sequence 

alignment, transcriptome reconstruction, expression quantification, and differential expression

 Page 34 

 

in pathway analysis and therapeutic target identification for precision medicine 

 

Seq data analysis workflow. This figure illustrates tools and processes involved in RNA-Seq data analysis. 

processing, sequence 

alignment, transcriptome reconstruction, expression quantification, and differential expression analysis



 

 

© 2024, IJTES Volume: 04 || Issue: 02 || April 2024 Page 27 
 

9. Acknowledgements 

I would like to acknowledge the Head, Dept. of Tech 

Biosciences, Digianalix for guidance in this review work. 

10. Authors Contribution 

Ariba Anwar, Nesae Akhdash, SabihaZarin Khanam, Aqusa 

Zaman, Harsimran Kaur Hora, Priyangulta Beckcontributed in 

literature search and manuscript writing; Priyangulta Beck, 

HarsimranKaurHora, MukeshNitin manuscript writing, 

literature searching and proof reading; Ariba Viswaraj Lal, 

Pinki Raj Sahu, Mukesh Nitin helped with proof reading; 

MukeshNitin helped with review design, proof reading, 

guiding. 

11. Source 

No external funding. Digianalix internal funding. 

REFERENCES  

1. R. L. Siegel, K. D. Miller, and A. Jemal, "Cancer 
statistics, 2019," CA Cancer J.Clin., vol. 69, no. 01, pp. 
7-34,  2019.doi: 10.3322/caac.21551. 

2. H. C. Crawford, M. P. d. Magliano, and S. Banerjee, 
"Signaling networks that control cellular plasticity in 
pancreatic tumorigenesis, progression, and metastasis, 
"Gastroenterology, vol. 156, no. 7, pp. 2073-2084, 
2019.doi: 10.1053/j.gastro.2018.12.042. 

3. L. E. Oldfield, A. A. Connor, and S. Gallinger, 
"Molecular events in the natural history of pancreatic 
cancer," TrendsCancer, vol. 3, no. 5, pp. 336-346, 2017. 
doi:10.1016/j.trecan.2017.04.005. 

4. P. Rawla, T. Sunkara, and V. Gaduputi, "Epidemiology 
of pancreatic cancer: global trends, etiology and risk 
factors," World J. Oncol., vol. 10, no. 1, pp. 10, 2019. 
doi:10.14740/wjon1166. 

5. J. Kleeff, M. Korc, M. Apte, C. La Vecchia, C. D. 
Johnson, A. V. Binkin, R. E. Neale, M. Tempero, D. A. 
Tuveson, R. H. Hruban, J. P. Neoptolemos, " Pancreatic 
cancer” Nat Rev Dis Primers vol. 21, no. 02, pp. 16022, 
2016. doi: 10.1038/nrdp.2016.22. 

6. Z. A-K. Catts, M. K. Baig, B. Milewski, C. Keywan, M. 
Guarino, N. Petrelli, "Statewide retrospective review of 
familial pancreatic cancer in Delaware, and frequency of 
genetic mutations in pancreatic cancer kindreds," 
Ann.Surg.Oncol., vol. 23, pp. 1729-1735, 2016. doi: 
10.1245/s10434-015-5026-x. 

7. M. Rainone, I. Singh, E. E. Salo-Mullen, Z. K. Stadler, 
E. M. O’Reilly, "An emerging paradigm for germline 
testing in pancreatic ductal adenocarcinoma and 
immediate implications for clinical practice: a review," 
JAMA Oncol., vol. 6, no. 5, pp. 764-771, 2020. doi: 
10.1001/jamaoncol.2019.5963. 

8. K. R. Kukurba and S. B. Montgomery, "RNA 
sequencing and analysis,"Cold Spring Harb.Protoc., vol. 
13, no. 11, pp. 951-969, 2015.doi: 
10.1101/pdb.top084970. 

9. Z. Wang, M. Gerstein, and M. Snyder, "RNA-Seq: a 
revolutionary tool for transcriptomics,"Nat. Rev. Genet., 
vol. 10, no. 1, pp. 57-63, 2009.doi: 10.1038/nrg2484. 

10. X. Zhang, S. Shi, B. Zhong, Q. Ni, X. Yu, J. Xu, 
"Circulating biomarkers for early diagnosis of pancreatic 
cancer: facts and hopes,"Am. J. Cancer Res., vol. 8, no. 
3, pp. 332-353, 2018. 

11. M. Mimeault, R. E. Brand, A. A. Sasson, S. K. Batra, 
"Recent advances on the molecular mechanisms involved 
in pancreatic cancer progression and 
therapies,"Pancreas, vol. 31, no. 4, pp. 301-316, 
2005.doi: 10.1097/01.mpa.0000175893.04660. 

12. A. Maitra and R. H. Hruban, "Pancreatic cancer,"Annu. 
Rev. Pathol. Mech. Dis., vol. 3, pp. 157-188, 2008.doi: 
https://doi.org/10.1146/annurev.pathmechdis.3.121806.1
54305. 

13. Y. Du, B. Zhao, Z. liu, X. Ren, W. Zhao, Z. Li, L. You, 
Y. Zhao, "Molecular subtyping of pancreatic cancer: 
translating genomics and transcriptomics into the 
clinic,"J. Cancer, vol. 8, no. 4, pp. 513-522, 2017.doi: 
10.7150/jca.17622. 

14. A. V. Biankin et al., "Pancreatic cancer genomes reveal 
aberrations in axon guidance pathway genes,"Nature, 
vol. 491, no. 7424, pp. 399-405, 2012.doi: 
https://doi.org/10.1038/nature11547. 

15. L. A. Chantrill et al., "Precision medicine for advanced 
pancreas cancer: the individualized molecular pancreatic 
cancer therapy (IMPaCT) trial,"Clin. Cancer Res., vol. 
21, no. 9, pp. 2029-2037, 2015.doi: 10.1158/1078-
0432.CCR-15-0426. 

16. M. R. Stratton, P. J. Campbell, and P. A. Futreal, "The 
cancer genome,"Nature, vol. 458, no. 7239, pp. 719-724, 
2009.doi: https://doi.org/10.1038/nature07943. 

17. A. Johnson, J. Zeng, A. M. Bailey, V. Holla, B. 
Litzenburger, H. Lara-Guerra, G. B. Mills, J. 
Mendelsohn, K. R. Shaw, F. Meric-Bernstam, "The right 
drugs at the right time for the right patient: the MD 
Anderson precision oncology decision support platform," 
Drug Discov. Today, vol. 20, no. 12, pp. 1433-1438, 
2015. doi: 10.1016/j.drudis.2015.05.013. 



 

 

© 2024, IJTES Volume: 04 || Issue: 02 || April 2024 Page 28 
 

18. M. Margulies et al., "Genome sequencing in 
microfabricated high-density picolitre reactors," Nature, 
vol. 437, no. 7057, pp. 376-380, 2005. doi: 
https://doi.org/10.1038/nature03959. 

19. J. Shendure, G. J. Porreca, N. B. Reppas, X. Lin, J. P. 
McCutcheon, A. M. Rosenbaum., "Accurate multiplex 
polony sequencing of an evolved bacterial genome," 
Science, vol. 309, no. 5741, pp. 1728-1732, 2005.doi: 
10.1126/science.1117389. 

20. S. Marguerat, B. T. Wilhelm, and J. Bähler, "Next-
generation sequencing: applications beyond genomes," 
Biochem. Soc. Trans., vol. 36, pt. 5, pp. 1091-1096, 
2008.doi: 10.1042/BST0361091. 

21. E. R. Mardis. "Next-generation sequencing 
platforms."Annu. Rev. Anal.Chem.,vol. 6,pp. 287-303, 
2013.doi: https://doi.org/10.1146/annurev-anchem-
062012-092628. 

22. S. Marguerat and J. Bähler, "RNA-seq: from technology 
to biology," CMLS.,vol. 67, pp. 569-579, 2010. doi: 
10.1007/s00018-009-0180-6 

23. S. L. Salzberg, "Recent advances in RNA sequence 
analysis,"F1000 Biol. Rep, vol. 2, 2010. 
doi: 10.3410/B2-64 

24. S. Zhao, W-P. Fung-Leung, A. Bittmer, K. Ngo, X. Liu, 
"Comparison of RNA-Seq and microarray in 
transcriptome profiling of activated T cells,"PLoS One, 
vol. 9, no. 1, p. e78644, 2014. doi: 
https://doi.org/10.1371/journal.pone.0078644 

25. S. Wang, Y. Zheng, F. Yang, L. Zhu, X-Q. Zhu, Z-F. 
Wang, X-L. Wu, C-H. Zhou, J-Y. Yan, B-Y. Hu, B. 
Kong, D-L. Fu, C. Bruns, Y. Zhao, L-X. Qin, Q-Z. 
Dong, "The molecular biology of pancreatic 
adenocarcinoma: Translational challenges and clinical 
perspectives," Sig Transduct Target Ther, vol. 6, no. 1, p. 
249, 2021. doi: https://doi.org/10.1038/s41392-021-
00659-4 

26. M. Basik, A. Aguilar-Mahecha, C. Rousseau, Z. Diaz, S. 
Tejpar, A. Spatz, C. M. T. Greenwood, G. Batist, 
"Biopsies: next-generation biospecimens for tailoring 
therapy,"Nat Rev Clin Oncol, vol. 10, no. 8, pp. 437-450, 
2013. doi: https://doi.org/10.1038/nrclinonc.2013.101 

27. T. R. Cech and J. A. Steitz, "The noncoding RNA 
revolution—trashing old rules to forge new ones,"Cell, 
vol. 157, no. 1, pp. 77-94, 2014.  doi: 
https://doi.org/10.1016/j.cell.2014.03.008. 

28. J. E. Bradner, D. Hnisz, and R. A. Young, 
"Transcriptional addiction in cancer,"Cell, vol. 168, no. 
4, pp. 629-643, 2017. doi: 
https://doi.org/10.1016/j.cell.2016.12.013.  

29. J. Zheng, X. Huang, W. Tan, et al., "Pancreatic cancer 
risk variant in LINC00673 creates a miR-1231 binding 
site and interferes with PTPN11 degradation,"Nat. 
Genet., vol. 48, no. 7, pp. 747-757, 2016.  
  doi: https://doi.org/10.1038/ng.3568 

30. S. Roychowdhury and A. M. Chinnaiyan, "Translating 
cancer genomes and transcriptomes for precision 
oncology,"CA Cancer J Clin, vol. 66, no. 1, pp. 75-88, 
2016. doi: https://doi.org/10.3322/caac.21329. 

31. J. Jia, H. Parikh, W. Xiao, et al., "An integrated 
transcriptome and epigenome analysis identifies a novel 
candidate gene for pancreatic cancer," BMC Med 
Genomics., 2013. doi: https://doi.org/10.1186/1755-
8794-6-33 

32. Y. Mao,J. Shen, Y. Lu, K. Lin, H. Wang, Y. Li, P. 
Chang, M. G. Walker, D. Li, "RNA sequencing analyses 
reveal novel differentially expressed genes and pathways 
in pancreatic cancer,"Oncotarget, vol. 8, no. 26, pp. 
42537-42547, 2017, doi: 10.18632/oncotarget.16451. 

33. M. K. Kirby, R. C. Ramaker, J. Gertz, et al., "RNA 
sequencing of pancreatic adenocarcinoma tumors yields 
novel expression patterns associated with long-term 
survival and reveals a role for ANGPTL4,"Mol.Oncol, 
vol. 10, no. 8, pp. 1169-1182, 2016.  
doi:10.1016/j.molonc.2016.05.004 

34. C. A. Maher, C. Kumar-Sinha, X. Cao,  et al., 
"Transcriptome sequencing to detect gene fusions in 
cancer,"Nature, vol. 458, no. 7234, pp. 97-101, 2009. 
doi:10.1038/nature07638 

35. S. Müller, S. Raulefs, P. Bruns, et al., "Next-generation 
sequencing reveals novel differentially regulated 
mRNAs, lncRNAs, miRNAs, sdRNAs and a piRNA in 
pancreatic cancer,"Mol Cancer, vol. 14, p. 94, Apr. 25, 
2015, doi: 10.1186/s12943-015-0358-5. doi: 
https://doi.org/10.1186/s12943-015-0358-5 

36. M. Steri, M. L. Idda, M. B. Whalen, V. Orrù, "Genetic 
variants in mRNA untranslated regions,"Wiley 
Interdiscip.Rev.RNA, vol. 9, no. 4, p. e1474, 2018. 
doi:10.1002/wrna.1474 

37. E. Rheinbay, M. M. Nielsen, F. Abascal, et al., 
"Analyses of non-coding somatic drivers in 2,658 cancer 
whole genomes,"Nature, vol. 578, no. 7793, pp. 102-
111, 2020.doi:  https://doi.org/10.1038/s41586-020-
1965-x. 

38. E. A. Collisson, A. Sadanandam, P. Olson, et al., 
"Subtypes of pancreatic ductal adenocarcinoma and their 
differing responses to therapy,"Nat Med, vol. 17, no. 4, 
pp. 500-503, 2011. doi: https://doi.org/10.1038/nm.2344  

39. R. A. Moffitt, R. Marayati, E. L. Flate, et al., "Virtual 
microdissection identifies distinct tumor- and stroma-



 

 

© 2024, IJTES Volume: 04 || Issue: 02 || April 2024 Page 29 
 

specific subtypes of pancreatic ductal 
adenocarcinoma,"Nat Genet, vol. 47, no. 10, pp. 1168-
1178, 2015.  doi: https://doi.org/10.1038/ng.3398 

40. P. Bailey, D. K. Chang, K. Nones, et al., "Genomic 
analyses identify molecular subtypes of pancreatic 
cancer,"Nature, vol. 531, no. 7592, pp. 47-52, 2016. 
doi:10.1038/nature16965 

41. C. Torres and P. J. Grippo, "Pancreatic cancer subtypes: 
a roadmap for precision medicine,"Ann.Med, vol. 50, no. 
4, pp. 277-287, 2018. doi: 
https://doi.org/10.1080/07853890.2018.1453168  

42. S. Jones, X. Zhang, D. W. Parsons, et al., "Core 
signaling pathways in human pancreatic cancers revealed 
by global genomic analyses,"Science, vol. 321, no. 5897, 
pp. 1801-1806, 2008.doi:10.1126/science.1164368 

43. M. Yu, D. T. Ting, S. L. Sctott, et al., "RNA sequencing 
of pancreatic circulating tumour cells implicates WNT 
signalling in metastasis,"Nature, vol. 487, no. 7408, pp. 
510-513, 2012. doi:10.1038/nature11217 

44. P. Polakis, "The many ways of Wnt in cancer," Curr Op 
Genet Dev, vol. 17, no. 1, pp. 45-51, 2007.doi: 
https://doi.org/10.1016/j.gde.2006.12.007 

45. S. Fatima, N. P. Lee, and J. M. Luk, "Dickkopfs and 
Wnt/β-catenin signalling in liver cancer,"World J. Clin. 
Oncol., vol. 2, no. 8, pp. 311, 2011. doi: 
10.5306/wjco.v2.i8.311 

46. C. Niehrs, "Function and biological roles of the Dickkopf 
family of Wnt modulators,"Oncogene, vol. 25, no. 57, 
pp. 7469-7481, 
2006.doi:https://doi.org/10.1038/sj.onc.1210054 

47. N. Pendás-Franco, J. M. García, C. Peña, N. Valle, H. G. 
Pàlmer, M. Heinäniemi, C. Carlberg, B. Jiménez, F. 
Bonilla, A. Muñoz, J. M. González-Sancho, 
"DICKKOPF-4 is induced by TCF/β-catenin and 
upregulated in human colon cancer, promotes tumour 
cell invasion and angiogenesis and is repressed by 1α, 
25-dihydroxyvitamin D3,"Oncogene, vol. 27, no. 32, pp. 
4467-4477, 2008. 
doi:https://doi.org/10.1038/onc.2008.88 

48. B. Yu, X. Yang, Y. Xu, G. Yao, H. Shu, B. Lin, L. Hood, 
H. Wang, S. Yang, J. Gu, W. Qin, "Elevated expression 
of DKK1 is associated with cytoplasmic/nuclear β-
catenin accumulation and poor prognosis in 
hepatocellular carcinomas,"J.Hepatol, vol. 50, no. 5, pp. 
948-957, 2009.doi: 
https://doi.org/10.1016/j.jhep.2008.11.020 

49. Y. Ouyang, J. Pan, Q. Tai, J. Ju, H. Wang, 
"Transcriptomic changes associated with DKK4 
overexpression in pancreatic cancer cells detected by 

RNA-Seq,"Tumor Biol., vol. 37, no. 8, pp. 10827-10838, 
2016.doi:https://doi.org/10.1007/s13277-015-4379-x 

50. V. Kothari, I. Wei, S. Shankar, et al., "Outlier kinase 
expression by RNA sequencing as targets for precision 
therapy,"Cancer Discov., vol. 3, no. 3, pp. 280-293, 
2013.doi: https://doi.org/10.1158/2159-8290.CD-12-
0336 

51. B. A. Hemmings and D. F. Restuccia, "Pi3k-pkb/akt 
pathway,"Cold Spring Harb. perspect. biol., vol. 4, no. 9, 
p. a011189, 2012. doi: 10.1101/cshperspect.a011189 

52. X. Ma, D. Thapi, X. Yan, Q-B. She, N. Rosales, D. 
Spriggs, "Muc16 carboxyl portion expression alternates 
PI3K/Akt and EGFR/HER2/ERK signal pathways in 
human ovarian cells,"Cancer Res, vol. 68, no. 9 
Supplement, pp. 3435-3435, 2008. 

53. H. Hu, F. Wang, M. Wang, Y. Liu, H. Wu, X. Chen, Q. 
Lin., "FAM83A is amplified and promotes 
tumorigenicity in non-small cell lung cancer via ERK 
and PI3K/Akt/mTOR pathways,"Int.J.Med.Sci., vol. 17, 
no. 6, pp. 807, 2020. doi:10.7150/ijms.33992 

54. L. Zhou, S. Jia, Y. Chen, W. Wang, Z. Wu, W. Yu, M. 
Zhang, G. Ding, L. Cao, "The distinct role of CD73 in 
the progression of pancreatic cancer,"J Mol Med, vol. 97, 
pp. 803-815, 2019.doi:https://doi.org/10.1007/s00109-
018-01742-0 

55. S. L. Organ and M.-S. Tsao, "An overview of the c-MET 
signaling pathway," Ther. adv. med. oncol., vol. 3, no. 1 
Suppl, pp. S7-S19, 2011. 
doi:10.1177/1758834011422556 

56. S. Li, A. Balmain, and C. M. Counter, "A model for RAS 
mutation patterns in cancers: finding the sweet spot,"Nat 
Rev Cancer, vol. 18, no. 12, pp. 767-777, 
2018.doi:https://doi.org/10.1038/s41568-018-0076-6 

57. P. Sidaway, "EGFR inhibition is effective against 
KRAS-wild-type disease,"Nat Rev Clin Oncol, vol. 14, 
no. 9, pp. 525, 
2017.doi:https://doi.org/10.1038/nrclinonc.2017.119 

58. C. M. Ardito, B.M. Grüner, K. K. Takeuchi, et al., "EGF 
receptor is required for KRAS-induced pancreatic 
tumorigenesis,"Cancer Cell, vol. 22, no. 3, pp. 304-317, 
2012.doi: https://doi.org/10.1016/j.ccr.2012.07.024 

59. C. Navas, I. H-Porras, A. J. Schuhmacher, M. Sibilia, C. 
Guerra, M. Barbacid, "EGF receptor signaling is 
essential for k-ras oncogene-driven pancreatic ductal 
adenocarcinoma,"Cancer Cell, vol. 22, no. 3, pp. 318-
330, 2012. doi:10.1016/j.ccr.2012.08.001 

60. B. Schultheis, D. Reuter, M. P. Ebert, et al., 
"Gemcitabine combined with the monoclonal antibody 
nimotuzumab is an active first-line regimen in KRAS 



 

 

© 2024, IJTES Volume: 04 || Issue: 02 || April 2024 Page 30 
 

wildtype patients with locally advanced or metastatic 
pancreatic cancer: A multicenter, randomized phase IIb 
study,"Ann.Oncol., vol. 28, no. 10, pp. 2429-2435, 
2017.doi: https://doi.org/10.1093/annonc/mdx343 

61. E. S. Knudsen, E. M. O’Reily, J. R. Brody, A. K. 
Witkiewicz, "Genetic diversity of pancreatic ductal 
adenocarcinoma and opportunities for precision 
medicine,"Gastroenterology, vol. 150, no. 1, pp. 48-63, 
2016.doi: https://doi.org/10.1053/j.gastro.2015.08.056 

62. Z. R. Qian, D. A. Rubinson, J. A. Nowak, et al., 
"Association of alterations in main driver genes with 
outcomes of patients with resected pancreatic ductal 
adenocarcinoma,"JAMA Oncology, vol. 4, no. 3, pp. 
e173420-e173420, 2018. 
doi:10.1001/jamaoncol.2017.3420 

63. L. T. Vassilev, B. T. Vu, B. Graves, et al., "In vivo 
activation of the p53 pathway by small-molecule 
antagonists of MDM2,"Science, vol. 303, no. 5659, pp. 
844-848, 2004.doi: 10.1126/science.1092472 

64. I. Ringshausen, C. C. O’Shea, A. J. Finch, L. B. Swigart, 
G. I. Evan, "Mdm2 is critically and continuously 
required to suppress lethal p53 activity in vivo,"Cancer 
Cell, vol. 10, no. 6, pp. 501-514, 
2006.doi:https://doi.org/10.1016/j.ccr.2006.10.010 

65. Y. Qian, Y. Gong, Z. Fan, et al., "Molecular alterations 
and targeted therapy in pancreatic ductal 
adenocarcinoma,"J HematolOncol., vol. 13, pp. 1-20, 
2020.doi:https://doi.org/10.1186/s13045-020-00958-3 

66. C. M. Koch, S. F.  Chiu, M. Akbarpour, A. Bharat, k. M. 
Ridge, E. T. Bartom, D. R. winter, "A beginner’s guide 
to analysis of RNA sequencing data,"Am J Respir Cell 
Mol Biol,, vol. 59, no. 2, pp. 145-157, 2018. 
doi:10.1165/rcmb.2017-0430TR 

67. F. Ozsolak and P. M. Milos, "RNA sequencing: 
advances, challenges and opportunities,"Nat.Rev.Genet., 
vol. 12, no. 2, pp. 87-98, 2011. doi:10.1038/nrg2934 

68. X. Adiconis, D. B-Rivera, R. Satija, et al., "Comparative 
analysis of RNA sequencing methods for degraded or 
low-input samples,"Nat Methods, vol. 10, no. 7, pp. 623-
629, 2013.doi:https://doi.org/10.1038/nmeth.2483 

69. A. Conesa, P. Madrigal, S. Tarazona, et al., "A survey of 
best practices for RNA-seq data analysis,"Genome Biol, 
vol. 17, p. 13, 2016.doi:https://doi.org/10.1186/s13059-
016-0881-8 

70. S. Andrews, "FastQC: a quality control tool for high 
throughput sequence data," pp. 1-1, 2010. 

71. A. M. Bolger, M. Lohse, B. Usadel, "Trimmomatic: a 
flexible trimmer for Illumina sequence 
data,"Bioinformatics, vol. 30, no. 15, pp. 2114-2120, 

Aug. 2014. DOI: 10.1093/bioinformatics/btu170.doi: 
https://doi.org/10.1093/bioinformatics/btu170 

72. B. Li, V. Ruotti, R. M. Stewart, J. A. Thomson, C. N. 
Dewey, "RNA-Seq gene expression estimation with read 
mapping uncertainty,"Bioinformatics, vol. 26, no. 4, pp. 
493-500, Feb. 2010.   
https://doi.org/10.1093/bioinformatics/btp692 

73. G. R. Grant, M. H. Farkas, A. D. Pizarro, N. F. Lahens, 
J. Schug, B. P. Brunk, C. J. Stoeckert, J. B. Hogenesch, 
E. A. Pierce, "Comparative analysis of RNA-Seq 
alignment algorithms and the RNA-Seq unified mapper 
(RUM),"Bioinformatics, vol. 27, no. 18, pp. 2518-2528, 
2011.doi: https://doi.org/10.1093/bioinformatics/btr427 

74. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. 
Zaleski, S. Jha, P. Batut, M. Chaisson, T. R. Gingeras, 
"STAR: ultrafast universal RNA-seq 
aligner,"Bioinformatics, vol. 29, no. 1, pp. 15-21, 
2013.doi: https://doi.org/10.1093/bioinformatics/bts635 

75. C. Trapnell, L. Pachter, and S. L. Salzberg, "TopHat: 
discovering splice junctions with RNA-
Seq,"Bioinformatics, vol. 25, no. 9, pp. 1105-1111, 
2009.https://doi.org/10.1093/bioinformatics/btp120 

76. R. Musich, L. Cadle-Davidson, and M. V. Osier, 
"Comparison of short-read sequence aligners indicates 
strengths and weaknesses for biologists to consider," 
Front. Plant Sci., vol. 12, p. 657240, 2021.doi: 
https://doi.org/10.3389/fpls.2021.657240  

77. G. Lunter and M. Goodson, "Stampy: a statistical 
algorithm for sensitive and fast mapping of Illumina 
sequence reads,"Genome Res., vol. 21, no. 6, pp. 936-
939, 2011.doi: 10.1101/gr.111120.110 

78. H. Li, J. Ruan, and R. Durbin, "Mapping short DNA 
sequencing reads and calling variants using mapping 
quality scores,"Genome Res., vol. 18, no. 11, pp. 1851-
1858, 2008.doi: 10.1101/gr.078212.108 

79. B. Langmead, C. Trapnell, M. Pop, S. L. Salzberg, 
"Ultrafast and memory-efficient alignment of short DNA 
sequences to the human genome,"Genome Biology, vol. 
10, pp. 1-10, 2009. doi:10.1186/gb-2009-10-3-r25 

80. H. Li and R. Durbin, "Fast and accurate short read 
alignment with Burrows–Wheeler transform, 
"Bioinformatics, vol. 25, no. 14, pp. 1754-1760, 
2009.doi: https://doi.org/10.1093/bioinformatics/btp324 

81. M. Garber, M.G. Grabherr, M. Guttman, C. Trapnell, 
"Computational methods for transcriptome annotation 
and quantification using RNA-seq,"Nat Methods, vol. 8, 
no. 6, pp. 469-477, Jun. 2011.   
 doi: https://doi.org/10.1038/nmeth.1613  



 

 

© 2024, IJTES Volume: 04 || Issue: 02 || April 2024 Page 31 
 

82. C. Trapnell, B. A. Williams, G. Pertea, A. Mortazavi, G. 
Kwan, M.J. V. Baren, S. L. Salzberg, B. J. Wold, L. 
Pachter, "Transcript assembly and quantification by 
RNA-seq reveals unannotated transcripts and isoform 
switching during cell differentiation," Nat Biotechnol, 
vol. 28, pp. 511-515, 2010. 
doi:https://doi.org/10.1038/nbt.1621  

83. A.M. Mezlini, E. J. M. Smith, M. Fiume, O. Buske, G. L. 
Savich, S. Shah, S. Aparicio, D. Y. Chiang, A. 
Goldenberg, M. Brudno, "iReckon: simultaneous isoform 
discovery and abundance estimation from RNA-seq 
data,"Genome Res, vol. 23, no. 3, pp. 519-529, Mar. 
2013. doi: 10.1101/gr.142232.112  

84. M.H. Schulz, D. R. Zerbino, M. Vingron, E. Birney, 
"Oases: robust de novo RNA-seq assembly across the 
dynamic range of expression levels,"Bioinformatics, 
vol. 28, no. 8, pp. 1086-1092, Apr. 2012.doi: 
https://doi.org/10.1093/bioinformatics/bts094 

85. T. Steijger, J. F. Abril, P. G. Engström, F. 
Kokocinski, RGASP Consortium, T. J. Hubbard, R. 
Guigó, J. Harrow, P. Bertone, "Assessment of 
transcript reconstruction methods for RNA-seq,"Nat 
Methods, vol. 10, no. 12, pp. 1177-1184, Dec. 
2013.doi:https://doi.org/10.1038/nmeth.2714 

86. M. Guttman, M. Garber, J. Z. Levin, et al., "Ab initio 
reconstruction of cell type-specific transcriptomes in 
mouse reveals the conserved multi-exonic structure 
of lincRNAs,"Nat Biotechnol, vol. 28, pp. 503-510, 
2010.doi:https://doi.org/10.1038/nbt.1633 

87. M. Pertea, G. M. Pertea, C. M. Antonescu, T-C. 
Chang, J. T. Mendell, S. L. Salzberg, "StringTie 
enables improved reconstruction of a transcriptome 
from RNA-seq reads,"Nat Biotechnol, vol. 33, no. 3, 
pp. 290-295, Mar. 
2015.doi:https://doi.org/10.1038/nbt.3122 

88. M.G. Grabherr, B. J. Haas, M. Yassour, et al., "Full-
length transcriptome assembly from RNA-Seq data 
without a reference genome,"Nat Biotechnol, vol. 29, 
no. 7, pp. 644-652, May 
2011.doi:https://doi.org/10.1038/nbt.1883 

89. G. Robertson, J. Schein, R. Chiu, et al., "De novo 
assembly and analysis of RNA-seq data,"Nat 
Methods, vol. 7, no. 11, pp. 909-912, Nov. 
2010.doi:https://doi.org/10.1038/nmeth.1517 

90. S. Anders, P.T. Pyl, W. Huber, "HTSeq--a Python 
framework to work with high-throughput sequencing 
data,"Bioinformatics, vol. 31, no. 2, pp. 166-169, Jan. 
2015.doi: 
https://doi.org/10.1093/bioinformatics/btu638 

91. C. Trapnell, A. Roberts, L. Goff, G. Pertea, D. Kim, 
D. R. Kelley, H. Pimentel, S. L. Salzberg, J. L. Rinn, 

L. Pachter, "Differential gene and transcript 
expression analysis of RNA-seq experiments with 
TopHat and Cufflinks,"Nat. Protoc., vol. 7, pp. 562-
578, 2012.doi:https://doi.org/10.1038/nprot.2012.016 

92. A. Roberts, L. Pachter, "Streaming fragment 
assignment for real-time analysis of sequencing 
experiments,"Nat. Methods, vol. 10, pp. 71-73, 
2013.doi:https://doi.org/10.1038/nmeth.2251 

93. Y. Katz, E. T. Wang, E. M. Airoldi, C. B. Burge, 
"Analysis and design of RNA sequencing 
experiments for identifying isoform regulation,"Nat. 
Methods, vol. 7, no. 12, pp. 1009-1015, 
2010.doi:https://doi.org/10.1038/nmeth.1528 

94. B. Li, C.N. Dewey, "RSEM: accurate transcript 
quantification from RNA-Seq data with or without a 
reference genome,"BMC Bioinformatics, vol. 12, p. 
323, Aug. 2011.doi:https://doi.org/10.1186/1471-
2105-12-323 

95. R. Patro, S.M. Mount, C. Kingsford, "Sailfish 
enables alignment-free isoform quantification from 
RNA-seq reads using lightweight algorithms,"Nat. 
Biotechnol., vol. 32, pp. 462-464, 
2014.doi:https://doi.org/10.1038/nbt.2862 

96. N.L. Bray, H. Pimentel, P. Melsted, L. Pachter, 
"Near-optimal probabilistic RNA-seq 
quantification,"Nat. Biotechnol., vol. 34, pp. 4-8, 
2016.doi:https://doi.org/10.1038/nbt.3519 

97. R. Patro, G. Duggal, M. I. Love, R.  A. Irizarry, C. 
Kingsford, "Salmon provides fast and bias-aware 
quantification of transcript expression,"Nat. Methods, 
vol. 14, pp. 417-419, 
2017.doi:https://doi.org/10.1038/nmeth.4197  

98. M. Griffith, O. L. Griffith, J. Mwenifumbo, R. Goya, 
"Alternative expression analysis by RNA 
sequencing,"Nat. Methods, vol. 7, pp. 843-847, 
2010.doi:https://doi.org/10.1038/nmeth.1503 

99. M. D. Robinson, D. J. McCarthy, G. K. Smyth, 
"edgeR: a bioconductor package for differential 
expression analysis of digital gene expression 
data,"Bioinformatics, vol. 26, pp. 139-140, 
2010.doi:https://doi.org/10.1093/bioinformatics/btp6
16 

100. M. I. Love, W. Huber, S. Anders, "Moderated 
estimation of fold change and dispersion for RNA-
seq data with DESeq2,"Genome Biol., vol. 15, p. 
550, 2014.doi: https://doi.org/10.1186/s13059-014-
0550-8 

101. C. W. Law, Y. Chen, W. Shi, G. K. Smyth, "Voom: 
precision weights unlock linear model analysis tools 
for RNA-seq read counts,"Genome Biol., vol. 15, p. 



 

 

© 2024, IJTES Volume: 04 || Issue: 02 || April 2024 Page 32 
 

R29, 2014.doi:https://doi.org/10.1186/gb-2014-15-2-
r29 

102. K. M. Sjoquist, V. T. Chin, L. A. Chantrill, et al., 
"Personalising pancreas cancer treatment: When 
tissue is the issue,"World J Gastroenterol., vol. 20, 
no. 24, pp. 7849-7863, Jun. 2014.doi: 
doi:10.3748/wjg.v20.i24.7849 

103. E. A. Collisson, P. Bailey, D. K. Chang, A. V. 
Biankin, "Molecular subtypes of pancreatic 
cancer,"Nat Rev GastroenterolHepatol., vol. 16, pp. 
207–220, 2019.doi:https://doi.org/10.1038/s41575-
019-0109-y 

104. M. Chan-Seng-Yue, J. C. Kim, G. W. Wilson, et al., 
"Transcription phenotypes of pancreatic cancer are 
driven by genomic events during tumor 
evolution,"Nat Genet., vol. 52, no. 2, pp. 231-240, 
Feb. 2020.doi:https://doi.org/10.1038/s41588-019-
0566-9 

105. A. A. Connor, R. E. Denroche, G. H. Jang, et al., 
"Association of Distinct Mutational Signatures With 
Correlates of Increased Immune Activity in 
Pancreatic Ductal Adenocarcinoma,"JAMA Oncol., 
vol. 3, no. 6, pp. 774-783, Jun. 
2017.doi:doi:10.1001/jamaoncol.2016.3916 


