
 International Journal of Technology and Emerging Sciences (IJTES)

 www.mapscipub.com

Volume 02 || Issue 03 || July 2022 || pp. 05-09 E-ISSN: 2583-1925

© 2022, IJTES | Volume 02 || Issue 03 || July 2022 | Page 5

Wrong Side Driving Detection

Sriram Narayana Cummaragunta 1, Srinandan K S 2, Jyoti Shetty 3

1,2,3Computer Science Engineering, RV College of Engineering, Bangalore, India

---***---

Abstract - Road accidents are one of the leading causes of

death. Many accidents are caused due to wrong side driving.

The motive of this project is to automate the difficult task of

enforcing the existing traffic laws automatically. It involves

continuous and real-time monitoring of traffic on a street or at

an intersection. To enforce traffic laws, there are various

challenges like illumination, occlusion, poor quality of CCTV

footage, changing weather conditions, etc. The paper proposes a

wrong side driving detection model based on Computer Vision.

For object-detection, the YOLOv4 algorithm is used. The

tracking of the moving objects is done using centroid tracking.

Finally, the approach uses ALPR to capture the license plates of

violating vehicles. The results are stored in the Firebase

database for further processing and the output is obtained to an

accuracy of more than 95%.

 Key Words—YOLOv4, Object Detection, Centroid

Tracking, ALPR, Firebase

1. INTRODUCTION
Deep Neural Networks” refer to Artificial Neural Networks
(ANN) having multiple layers. Due to its ability to handle a huge
amount of data, it has become widely used by Data Scientists for
all kinds of applications. Convolutional Neural Network (CNN)
is an example of an ANN that has become popular in recent
years. It derives its name from mathematical linear operations
between matrices referred to as convolutions. [1] CNN has many
layers such as the convolutional layer, the nonlinearity layer, the
pooling layer and the fully-connected layer. In comparison with
standard feedforward neural networks having similar sized
layers, CNNs have significantly fewer connections and
parameters. [2] Due to this, they are much faster and easier to
train. CNN is used in a variety of applications such as image
classification data sets (eg- Image Net [2]), computer vision,
anomaly detection, NLP, etc.

YOLO is brief for You Only Look Once. It's a period of time
seeing systems which may acknowledge multiple objects in
every frame. YOLO acknowledges objects with higher precision
and speed compared to alternative object detection
algorithms.[3] YOLO is predicated on Convolutional Neural
Networks (CNN). A CNN divides a picture into many different
regions. The YOLO model then predicts the various bounding-
boxes along with their possibilities for every region. YOLO
views the whole image throughout coaching.

YOLO was invented by Joseph Redmon [3]. YOLO v4 was
invented by 3 developers Alexey Bochkovskiy, Hong-Yuan and
Chien-Yao [4]. YOLOv4’s design consists of CSPDarknet53 as
a backbone, abstraction pyramid pooling extra module, PANet

path-aggregation neck and YOLOv3 head. [4] CSPDarknet53
may be a novel backbone that may enhance the training
capability of CNN. The abstraction pyramid pooling block is
side over CSPDarknet53 to extend the receptive field and strain
the foremost important context options. Rather than Feature
pyramid networks (FPN) for object detection employed in
YOLOv3, the PANet is employed because of the technique for
parameter aggregation for various detector levels. [4] YOLOv4
is double as quick as EfficientDet (competitive recognition
model) with comparable performance. Additionally, AP
(Average Precision) and Federal Protective Service (Frames Per
Second) are magnified by a 100% and twelve-tone system
compared to YOLOv3 [4]. Due to these advantages of YOLOv4
over YOLOv3, this project proposes the use of YOLOv4 for the
detection of vehicles.

2. RELATED WORK
There are many related works done in this field, for varying
requirements. Saidasul et al. [5] developed a real-time intelligent
transportation system (ITS) to detect vehicles going on the
wrong side of the road using the YOLOv3 model. Our work has
been inspired by this paper, and the objective is to upgrade the
algorithm to YOLOv4, while also using some of our own
techniques to reduce computational costs.

Qin Zou et al. [6] propose a model that uses a hybrid deep
neural-network. This model is used for lane detection. The
system uses continuous frames extracted from a piece of footage
taken from a vehicle driving on the road. This model combines
DRNN and DCNN models. Later uses a LSTM model for
mapping. The results obtained demonstrate the benefits of
ConvLSTM compared to FcLSTM w.r.t sequential feature-
learning as well as target information prediction with respect to
lane detection. Area for research and improvement under the
usage of SegNetConv network rather than UNet-Conv network
is stated.

 Gonçalo Monteiro et al. [7], proposed a system automatically
detects drivers travelling in the wrong direction. This sets off a
pre configured alarm on various highway-traffic related
telematic systems. It also tracks vehicles against crowded events
as well as occlusions. The model used is Optical Flow with
Gaussian Mixture model and filtering. However, the authors
stated that there is a possibility that a vector/vectors of flow are
detected despite the absence of real motion. This is caused by
unexpected vibrations or movement of the camera-pole. This
could also be caused by noisy or faulty motion-flow estimation.

 Zillur Rahman et al. [8] propose a system that can identify
vehicles travelling in the wrong direction on a road. This system
marks/demarcates them from the on road CCTV footage. YOLO
object detector is used since it’s highly accurate. It is also
quicker compared to any other object detection algorithm. To
verify their system, they captured three videos from the roads in

© 2022, IJTES | Volume 02 || Issue 03 || July 2022 | Page 6

Chittagong, Bangladesh. The resolution of the CCTV footage
was 1280 x 720 pixels. Every wrong-side car from the three
videos were successfully identified and penalised. Thus,
accuracy of their system, in practical scenarios, was almost
100%. One of the limitations of their system was the centroid-
tracking technique that was used. The object centroids calculated
from the bounding boxes must be in close proximity between
neighbouring frames. Otherwise the ID number might be
interchanged due to overlapping vehicles (objects).

Junli Tao et al. [9] address multi-lane roads. It uses CCTV
footage from a camera to identify the currently occupied lane of
a vehicle. GPS information is utilised to determine the
constraints that should be enforced w.r.t directions travelled for
a certain road taken into consideration. The authors adopted a
multi-lane detecting monocular camera. It then analyzes the
identified lanes in conjunction with GPS data in order to locate
the vehicle more precisely at lane level. The system that was
developed was fairly accurate for the identification of wrong
side driving provided that the road marking was reasonably
visible and were not occluded due to other cars present on the
road or in the same lane. This system can be tweaked to take
care of GPS temporal-occlusion situations. This is because the
GPS data is not required for each and every frame.

A. Sentas et al. [10] address the issue of cars using emergency
lanes designated for emergency vehicles like ambulances, etc. If
any vehicle travels in the wrong lane, a violation is recorded by
their system. Violation detection processes were carried out on
the basis of various real-time image-processing algorithms.
Unlike many papers, background-subtraction is not utilised in
vehicle-detection algorithms. To detect a lane violation, two
points are taken from the lane and an imaginary line is drawn by
the program indicating the emergency lane. This is done by
calculating slope and intercept and using elementary geometric
techniques. Their program is resistant to conditions such as
moving cameras, changing weather conditions, etc. In future the
authors plan to create a model in which the user can choose what
type of violations to monitor.

Y. Xing et al. [11] undertook a comprehensive analysis of
various lane detection algorithms. They considered three aspects
namely lane-detection techniques, integration, as well as
evaluation-methods. Due to limitations inherent in camera based
lane identification models, techniques to develop more robust
and precise lane detection systems are pondered upon. The
authors also propose a new, state of the art “computational
experiment based parallel lane detection framework”.

V. Nguyen et al. [12] propose an algorithm to yield information
related to the lane as well as the vehicle which can be used by
the proposed driver-assistance system, referred to by the authors
as a “lane change assistant system (LCAS)”. Many papers in the
past could only detect the vehicles or the lanes separately and
independently of each other. The authors, however, assert that
the combination of the lane information as well as the vehicle
information can be used to aid the LCAS and improve the
accuracy and reliability of the proposed system. An LCAS
should be able to identify frontal lanes and also discover the
vehicles present around any test vehicle. A computer vision
based system is proposed consisting of three cameras, two of
which are under the wing mirrors, and one on the test vehicle’s
windscreen. The cameras’ video is processed and is utilised to
identify three lanes, and also detect the vehicles around it. After
this, the Kalman filter is utilised to track and monitor the
vehicles that are detected. And finally, the relative speed

between the detected vehicle and the test vehicle is computed.
Each frame takes roughly 43 ms to process. This system was
tested on various Korean highways.

J. C. Nascimento et al. [13] address the issue of tracking and
monitoring moving objects by using deformable models. The
authors propose a new Kalman-based technique. Abrantes and
Marques, in 1996, proposed a category of constrained clustering
techniques in the domain of static shape estimation, which
inspired the authors’ work. Centroids of the moving objects are
tracked and monitored by using inter-frame as well as intra-
frame recursions. Centroids are calculated by computing the
weighted-sums of the edge-points that correspond to the moving
object’s bounding box. The authors use various competitive-
learning techniques inside the algorithm used for tracking
objects. This leads to improved robustness w.r.t. contour sliding
as well as occlusion.

J. Jin et al. [14] address the design as well as the implementation
of real-time multi-object centroid-tracking for the purpose of
gesture recognition. It comprises 4 stages namely
“preprocessing, local intensity accumulation, object observation,
and particle filter”[14]. They discuss 2 major aspects, which are
the trajectory accuracy of moving objects as well as real time
processing. With the help of many real world experiments, the
performance of the model was evaluated and their processing
speed and efficiency were compared to the algorithm itself based
on its software simulations. Although their work was focussed
on gesture recognition, the very same centroid tracking concepts
used in [13] and [14] were taken into consideration for the
design of this project’s centroid tracking algorithm.

3. METHODOLOGY

This section discusses the methodology of the proposed work.

Figure 1. Flowchart representing the project

In Figure 1, one can see the basic architecture of the project. The
video input is taken, frames are extracted from them, then the

© 2022, IJTES | Volume 02 || Issue 03 || July 2022 | Page 7

frames are processed on the YOLO model. The model uses
object detection to detect vehicles within each frame and form
centroids for the objects detected. An imaginary divider is
created from the input video file. This divider is necessary as
each movement of centroids needs to be categorised using lanes.
After all this processing, the output video is returned.

A. Algorithm

1. The program starts by sending an input video frame to
the YOLOv4 model that was trained using the OIv6
dataset [15] on a separate Colab notebook as observed
in our Git repository. One can download the obtained
weights and use that in this system. This is handy to
separate the training and prediction processes, since the
end user is most likely to be a layperson who wants to
use the system for his/her requirements and is only
interested with the prediction portion of this project.

2. The program returns us bounding boxes of vehicles,
once the frame is processed by the model.

3. To find out the direction of a tracked vehicle, the
program computes the difference between a range of
frames. It does this by first computing the object
centroid from the bounding boxes using elementary
geometric techniques. Suppose frame FN has a centroid
(xN, yN) then the program computes the pixel difference
for varying values of N, during the configuration step
as explained below. This step of the algorithm was
inspired from [5].

4. In the first few “configuration” seconds, the direction
of all vehicles is tracked. The movement of a centroid
assigned an ID is tracked using the Euclidean distance
algorithm and is used in the next step.

5. To determine whether the car is traveling on the right
or wrong side of the road, the program creates an
imaginary divider or median in the road based on the
average extreme positions of vehicles moving in
respective directions. Due to the jittery nature of the
initial object detection algorithm, the bounding boxes’
mini oscillations mean that a slope cannot be calculated
easily and therefore the median calculated is assumed
to be vertical. In left side driving nations, whatever
vehicles moving upwards and to the right of the median
are considered as violations.

6. The vehicles moving in the wrong direction are
considered as violations and these violations are
uploaded to the Firebase database.

7. Finally, using ALPR, the violator's license plate is
found and matched with the police database and a
challan is generated with the photo evidence.

8. The following dataset is used by the proposed work:

- Object detection image dataset for training : OIv6
[15]

Other CCTV camera videos found on YouTube are
used to run validation of wrong side detection.

B. Implementation Details

Language used in the entire project is Python (3.7+). Tools used
in this project include:

● Darknet : It is an open-source neural network framework. It
is simple to setup and install, quick and supports GPU as
well as CPU computation.

● Google Colab : This is a product from Google Research that
provides a Virtual Environment for the execution of Python
Code on a reasonably fast GPU to carry out ML-related
tasks anywhere on the internet.

● Anvil : This is used to convert a Colab’s model into a web
application. This was used as the front-end of the project.

● Firebase Firestore : The cloud database used to store and
send the detections to the front-end of the application.

Anvil and Colab have been used in order to use a moderately
powerful GPU along with a functional frontend. This project can
be implemented without these tools on a powerful machine, and
the above is done for demonstration purposes only.

Although the model does not follow any specific data
preprocessing steps, the dataset being used is provided by Open
Images v6 (via Google), which provides annotated datasets to
the specific classes needed. In this model, a “Cars” dataset was
used, which was annotated by OIv6 for object detection.
Collecting the dataset from Google's Open Images Dataset and
then using the OIDv4 toolkit to generate the required labels is
simple, efficient and elementary. The label contains the
annotation labels. The labels that the toolkit gives us aren’t in
the prescribed YOLOv4 format. Using various helper programs,
the labels were successfully converted to the required format.
One has to change the label filename to utilise it along with the
algorithm during the training process. [15]

The technique chosen to work with on this model is a Validation
data split. To avoid re-substitution errors, the data was split into
2 different classes, namely a training dataset as well as a testing
dataset. The model is built on a 70/30 split. The technique used
here is referred to as the “hold-out validation technique”. There
may be a likelihood that a non-uniform distribution of distinct
categories of data is found in training and validation dataset. To
rectify this issue, the training dataset and the test dataset are
created with equally distributed classes of data (referred to as
stratification).

4. RESULTS AND ANALYSIS

For testing purposes, the model was verified with the help of an

Anvil Frontend and a Colab backend as mentioned earlier. The

input video was fed as a YouTube video link. Vehicles travelling

in the wrong direction on the road were edited into the video. On

clicking the submit button on the frontend, an output was

displayed on the screen. Violating vehicles’ pictures were also

stored on the Firebase database for proof. Some of the output

obtained is shown below.

© 2022, IJTES | Volume 02 || Issue 03 || July 2022 | Page 8

Figure 2. Project running on an Anvil Frontend

 Figure 3. Picture of the violation stored in Firebase

 Figure 4. One of the violations stored in Firebase (red colored

centroid indicates a violation and the blue line is the imaginary

median automatically constructed by the program)

 Figure 5. Another violation stored in Firebase

In Figure 4 and 5, it should be noted that the car whose centroid

id is 42 took time to turn red from green. This is to prevent the

system from penalising parked or slow moving cars.

The model trained resulted in an astonishingly high accuracy,

more than 95% for the validation input provided, exceeding

many expectations. However, the project still returns rare cases

of false positives during certain traffic jams. Overall, one can see

that the model is performing excellently and can be used with a

front end.

A front end was later on added for demonstration purposes.

Anvil was used for this to convert the Colab notebook to a

working web-app by passing data through firebase storage. A

manual video was considered for testing and a Confusion Matrix

was created.

TABLE 1. CONFUSION MATRIX FOR WRONG SIDE DRIVING DETECTION

Total = 250 Predicted Wrong

Side Driving

Predicted Right Side

Driving

Actual Wrong Side

Driving

31 1

Actual Right Side

Driving

10 208

From the confusion matrix (Table 1), one can calculate attributes

like Accuracy, Misclassification and Precision.

Accuracy = (TP+TN)/Total = (239)/250 = 95.6%

Misclassification= (FP+FN)/Total = 11/250 = 4.4%

Precision = TP/(TP+FP) = 40/41 = 97.5%

The model’s learning curve was plotted which was fit perfectly

to not overfit over the training data. The warning instructions for

the training process are given by the official Darknet Git repo.

[4]

 Figure 6. Learning Curve of the YOLOv4 model during the

training process

© 2022, IJTES | Volume 02 || Issue 03 || July 2022 | Page 9

Figure 2 shows the learning curve of a model which after around

2000 iterations straightens on the curve indicating its not

learning at a pace worth training. This plots to an accuracy of

around 0.7 to 1. Hence when the model was trained, the training

was stopped sooner without overdoing it.

4. LIMITATIONS
The project has met the expectations sought out, but it certainly

has faced several limitations along the way:.

1. The sensitivity of the camera input required : The input

clipping that the model takes in must be from a fixed

and stable CCTV. This rules out Dashboard cameras,

rotating surveillance cameras, etc. Or else, the model

struggles to find the divider resulting in failure of lane

separation.

2. Camera orientation: As discussed in the methodology

section, the CCTV camera must be straight and parallel

with respect to the road since the imaginary divider

does not have any slope.

3. False Positives : The model sometimes results in false

positives, due to blurred footage or due to improper

detections. Although it isn’t very often, it does occur

once in a while.

4. Speed of response from Anvil : As the project

requirements don’t mention a custom made front-end,

Anvil was utilised to use the Colab notebook on a

Webapp. And as expected, the response speed isn’t as

desired. However, the project’s core functionality is as

fast and lightweight as expected.

5. CONCLUSION AND FUTURE SCOPE
The solution proposed is completely automated and doesn’t need

any manual intervention. The current system is rusty as it

requires a traffic police or a certain person to keep tabs on the

traffic through the footage, which makes it inefficient, not so

accurate, and rather time consuming. The model brings in a

detection accuracy of around 95% and a real time viable lane

detection accuracy.

The model has accomplished the goals sought out with great

accuracy. Like most other projects, there is room for future

enhancements as well. A few ideas can be explored:

● Making a custom Front-end for the project.

● Improving efficiency of the model by better training.

● Customizing the simplistic centroid tracking algorithm

(which currently uses Euclidean distances).

Considering all these future enhancements left and constraints

faced while implementation, this doesn’t mean the goals sought

out were met to the finest extent possible. We are keen on

working on this project to the next level in the future by

continuously fine-tuning the code.

Our code can be found at the following link:

https://github.com/sriramcu/yolov4_wrong_side_driving_detecti

on

REFERENCES

[1] S. Albawi, T. A. Mohammed, and S. Al-Zawi,

“Understanding of a convolutional neural network,” in

2017 International Conference on Engineering and

Technology (ICET), 2017, pp. 1–6.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“ImageNet classification with deep convolutional

neural networks,” Commun. ACM, vol. 60, no. 6, pp.

84–90, 2017.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You only look once: Unified, real-time object

detection,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016.

[4] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,

“YOLOv4: Optimal speed and accuracy of object

detection,” arXiv [cs.CV], 2020.

[5] S. Usmankhujaev, S. Baydadaev, and K. J. Woo,

“Real-time, deep learning based wrong direction

detection,” Appl. Sci. (Basel), vol. 10, no. 7, p. 2453,

2020.

[6] Q. Zou, H. Jiang, Q. Dai, Y. Yue, L. Chen, and Q.

Wang, “Robust Lane detection from continuous driving

scenes using deep neural networks,” arXiv [cs.CV],

2019.

[7] G. Monteiro, M. Ribeiro, J. Marcos, and J. Batista,

“Wrongway drivers detection based on optical flow,”

in 2007 IEEE International Conference on Image

Processing, 2007, vol. 5, pp. V-141-V–144.

[8] Z. Rahman, A. M. Ami, and M. A. Ullah, “A real-time

wrong-way vehicle detection based on YOLO and

10RegionIEEE2020intracking,”centroid

Symposium (TENSYMP), 2020, pp. 916–920.

[9] Tao, J., Shin, B.-S., & Klette, R. (2013). Wrong

roadway detection for multi-lane roads. In Computer

Analysis of Images and Patterns (pp. 50–58). Berlin,

Heidelberg: Springer Berlin Heidelberg.

[10] A. Sentas, S. Kul, and A. Sayar, “Real-time traffic

rules infringing determination over the video stream:

Wrong way and clearway violation detection,” in 2019

International Artificial Intelligence and Data

Processing Symposium (IDAP), 2019.

[11] Y. Xing et al., “Advances in vision-based Lane

detection: Algorithms, integration, assessment, and

perspectives on ACP-based parallel vision,”

IEEE/CAA j. autom. sin., vol. 5, no. 3, pp. 645–661,

2018.

[12] V. Nguyen, H. Kim, S. Jun, and K. Boo, “A study on

real-time detection method of Lane and vehicle for

Lane change assistant system using vision system on

highway,” Eng. Sci. Technol. Int. J., 2018

[13] J. C. Nascimento, A. J. Abrantes, and J. S. Marques,

“An algorithm for centroid-based tracking of moving

objects,” in 1999 IEEE International Conference on

Acoustics, Speech, and Signal Processing. Proceedings.

ICASSP99 (Cat. No.99CH36258), 1999, vol. 6, pp.

3305–3308 vol.6.

[14] J. Jin, S. Lee, B. Jeon, T. T. Nguyen, and J. W. Jeon,

“Real-time multiple object centroid tracking for gesture

recognition based on FPGA,” in Proceedings of the 7th

International Conference on Ubiquitous Information

Management and Communication - ICUIMC ’13,

2013.

[15] “Open Images V6,” Googleapis.com. [Online].

https://storage.googleapis.com/openimages/web/index.

html. [Accessed: 26-Aug-2021].

	TABLE 1. Confusion Matrix for Wrong side Driving Detection
	References
	Word Bookmarks
	e739hcgqarho
	wjpon9z5lwag
	n9ywjl3b89py
	799m5x8ojn8q
	bxcuj6srh1ws
	zfzd7840irnw
	sizuu76f49e8
	csz972ey15qa
	o0ln572nkmxb
	1silojtsc4me
	x0swjpq6qfsl
	a2ux2j8u3bt4
	hf7hffedohx6
	cj8fkv8m9fda
	n3kl7lxke51j

