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Abstract - Road accidents are one of the leading causes of 

death. Many accidents are caused due to wrong side driving. 

The motive of this project is to automate the difficult task of 

enforcing the existing traffic laws automatically.  It involves 

continuous and real-time monitoring of traffic on a street or at 

an intersection. To enforce traffic laws, there are various 

challenges like illumination, occlusion, poor quality of CCTV 

footage, changing weather conditions, etc. The paper proposes a 

wrong side driving detection model based on Computer Vision. 

For object-detection, the YOLOv4 algorithm is used. The 

tracking of the moving objects is done using centroid tracking. 

Finally, the approach uses ALPR to capture the license plates of 

violating vehicles. The results are stored in the Firebase 

database for further processing and the output is obtained to an 

accuracy of more than 95%. 

 Key Words—YOLOv4, Object Detection, Centroid 

Tracking, ALPR, Firebase  
 

1. INTRODUCTION  
Deep Neural Networks” refer to Artificial Neural Networks 
(ANN) having multiple layers. Due to its ability to handle a huge 
amount of data, it has become widely used by Data Scientists for 
all kinds of applications. Convolutional Neural Network (CNN) 
is an example of an ANN that has become popular in recent 
years. It derives its name from mathematical linear operations 
between matrices referred to as convolutions. [1] CNN has many 
layers such as the convolutional layer, the nonlinearity layer, the 
pooling layer and the fully-connected layer. In comparison with 
standard feedforward neural networks having similar sized 
layers, CNNs have significantly fewer connections and 
parameters. [2] Due to this, they are much faster and easier to 
train. CNN is used in a variety of applications such as image 
classification data sets (eg- Image Net [2]), computer vision, 
anomaly detection, NLP, etc.  

YOLO is brief for You Only Look Once.  It's a period of time 
seeing systems which may acknowledge multiple objects in 
every frame. YOLO acknowledges objects with higher precision 
and speed compared to alternative object detection 
algorithms.[3] YOLO is predicated on Convolutional Neural 
Networks (CNN). A CNN divides a picture into many  different 
regions. The YOLO model then predicts the various bounding-
boxes along with their possibilities for every region. YOLO 
views the whole image throughout coaching.  

YOLO was invented by Joseph Redmon [3]. YOLO v4 was 
invented by 3 developers Alexey Bochkovskiy, Hong-Yuan and 
Chien-Yao [4]. YOLOv4’s design consists of CSPDarknet53 as 
a backbone, abstraction pyramid pooling extra module, PANet 

path-aggregation neck and YOLOv3 head. [4] CSPDarknet53 
may be a novel backbone that may enhance the training 
capability of CNN. The abstraction pyramid pooling block is 
side over CSPDarknet53 to extend the receptive field and strain 
the foremost important context options. Rather than Feature 
pyramid networks (FPN) for object detection employed in 
YOLOv3, the PANet is employed because of the technique for 
parameter aggregation for various detector levels. [4] YOLOv4 
is double as quick as EfficientDet (competitive recognition 
model) with comparable performance. Additionally, AP 
(Average Precision) and Federal Protective Service (Frames Per 
Second) are magnified by a 100% and twelve-tone system 
compared to YOLOv3 [4]. Due to these advantages of YOLOv4 
over YOLOv3, this project proposes the use of YOLOv4 for the 
detection of vehicles.  

2. RELATED WORK 
There are many related works done in this field, for varying 
requirements. Saidasul et al. [5] developed a real-time intelligent 
transportation system (ITS) to detect vehicles going on the 
wrong side of the road using the YOLOv3 model. Our work has 
been inspired by this paper, and the objective is to upgrade the 
algorithm to YOLOv4, while also using some of our own 
techniques to reduce computational costs. 

Qin Zou et al. [6] propose a model that uses a hybrid deep 
neural-network. This model is used for lane detection. The 
system uses continuous frames extracted from a piece of footage 
taken from a vehicle driving on the road. This model combines 
DRNN and DCNN models. Later uses a LSTM model for 
mapping.  The results obtained demonstrate the benefits of 
ConvLSTM compared to FcLSTM w.r.t sequential feature-
learning as well as target information prediction with respect to 
lane detection. Area for research and improvement under the 
usage of SegNetConv network rather than UNet-Conv network 
is stated. 

 Gonçalo Monteiro et al. [7], proposed a system automatically 
detects drivers travelling in the wrong direction. This sets off a 
pre configured alarm on various highway-traffic related 
telematic systems. It also tracks vehicles against crowded events 
as well as occlusions. The model used is Optical Flow with 
Gaussian Mixture model and filtering. However, the authors 
stated that there is a possibility that a vector/vectors of flow are 
detected despite the absence of real motion. This is caused by 
unexpected vibrations or movement of the camera-pole. This 
could also be caused by noisy or faulty motion-flow estimation. 

 Zillur Rahman et al. [8] propose a system that can identify 
vehicles travelling in the wrong direction on a road. This system 
marks/demarcates them from the on road CCTV footage. YOLO 
object detector is used since it’s highly accurate. It is also 
quicker compared to any other object detection algorithm. To 
verify their system, they captured three videos from the roads in 
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Chittagong, Bangladesh. The resolution of the CCTV footage 
was 1280 x 720 pixels. Every wrong-side car from the three 
videos were successfully identified and penalised. Thus, 
accuracy of their system, in practical scenarios, was almost 
100%. One of the limitations of their system was   the centroid-
tracking technique that was used. The object centroids calculated 
from the bounding boxes must be in close proximity between 
neighbouring frames. Otherwise the ID number might be 
interchanged due to overlapping vehicles (objects). 

Junli Tao et al. [9] address multi-lane roads. It uses CCTV 
footage from a  camera to identify the currently occupied lane of 
a vehicle. GPS information is utilised to determine the 
constraints that should be enforced w.r.t directions travelled for 
a certain road taken into consideration. The authors adopted a 
multi-lane detecting monocular camera. It then analyzes the 
identified lanes in conjunction with GPS data in order to locate 
the vehicle more precisely at lane level. The system that was 
developed was fairly accurate for the identification of wrong 
side driving provided that the road marking was reasonably 
visible and were not occluded due to other cars present on the 
road or in the same lane. This system can be tweaked to take 
care of GPS temporal-occlusion situations. This is because the 
GPS data is not required for each and every frame. 

A. Sentas et al. [10] address the issue of cars using emergency 
lanes designated for emergency vehicles like ambulances, etc.  If 
any vehicle travels in the wrong lane, a violation is recorded by 
their system. Violation detection processes were carried out on 
the basis of various real-time image-processing algorithms. 
Unlike many papers, background-subtraction is not utilised in 
vehicle-detection algorithms. To detect a lane violation, two 
points are taken from the lane and an imaginary line is drawn by 
the program indicating the emergency lane. This is done by 
calculating slope and intercept and using elementary geometric 
techniques. Their program is resistant to conditions such as 
moving cameras, changing weather conditions, etc. In future the 
authors plan to create a model in which the user can choose what 
type of violations to monitor.  

Y. Xing et al. [11] undertook a comprehensive analysis of 
various lane detection algorithms. They considered three aspects 
namely lane-detection techniques, integration, as well as 
evaluation-methods. Due to limitations inherent in camera based 
lane identification models, techniques to develop more robust 
and precise lane detection systems are pondered upon. The 
authors also propose a new, state of the art “computational 
experiment based parallel lane detection framework”. 

V. Nguyen et al. [12] propose an algorithm to yield information 
related to the lane as well as the vehicle which can be used by 
the proposed driver-assistance system, referred to by the authors 
as a “lane change assistant system (LCAS)”. Many papers in the 
past could only detect the vehicles or the lanes separately and 
independently of each other. The authors, however, assert that 
the combination of the lane information as well as the vehicle 
information can be used to aid the LCAS and improve the 
accuracy and reliability of the proposed system. An LCAS 
should be able to identify frontal lanes and also discover the 
vehicles present around any test vehicle. A computer vision 
based system is proposed consisting of three cameras, two of 
which are under the wing mirrors, and one on the test vehicle’s 
windscreen. The cameras’ video is processed and is utilised to 
identify three lanes, and also detect the vehicles around it. After 
this, the Kalman filter is utilised to track and monitor the 
vehicles that are detected. And finally, the relative speed 

between the detected vehicle and the test vehicle is computed. 
Each frame takes roughly 43 ms to process. This system was 
tested on various Korean highways. 

J. C. Nascimento  et al. [13] address the issue of tracking and 
monitoring moving objects by using deformable models. The 
authors propose a new Kalman-based technique. Abrantes and 
Marques, in 1996, proposed a category of constrained clustering 
techniques in the domain of static shape estimation, which 
inspired the authors’ work. Centroids of the moving objects are 
tracked and monitored by using inter-frame as well as intra-
frame recursions. Centroids are calculated by computing the 
weighted-sums of the edge-points that correspond to the moving 
object’s bounding box. The authors use various competitive-
learning techniques inside the algorithm used for tracking 
objects. This leads to improved robustness w.r.t. contour sliding 
as well as occlusion.  

J. Jin et al. [14] address the design as well as the implementation 
of real-time multi-object centroid-tracking for the purpose of 
gesture recognition. It comprises 4 stages namely 
“preprocessing, local intensity accumulation, object observation, 
and particle filter”[14]. They discuss 2 major aspects, which are 
the trajectory accuracy of moving objects as well as real time 
processing. With the help of many real world experiments, the 
performance of the model was evaluated and their processing 
speed and efficiency were compared to the algorithm itself based 
on its software simulations. Although their work was focussed 
on gesture recognition, the very same centroid tracking concepts 
used in [13] and [14] were taken into consideration for the 
design of this project’s centroid tracking algorithm. 

3. METHODOLOGY 

 
This section discusses the methodology of the proposed work.  

 

Figure 1.  Flowchart representing the project 

 

In Figure 1, one can see the basic architecture of the project. The 
video input is taken, frames are extracted from them, then the 
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frames are processed on the YOLO model. The model uses 
object detection to detect vehicles within each frame and form 
centroids for the objects detected. An imaginary divider is 
created from the input video file. This divider is necessary as 
each movement of centroids needs to be categorised using lanes. 
After all this processing, the output video is returned. 

A. Algorithm 

1. The program starts by sending an input video frame to 
the YOLOv4 model that was trained using the OIv6 
dataset [15] on a separate Colab notebook as observed 
in our Git repository. One can download the obtained 
weights and use that in this system. This is handy to 
separate the training and prediction processes, since the 
end user is most likely to be a layperson who wants to 
use the system for his/her requirements and is only 
interested with the prediction portion of this project. 

2. The program returns us bounding boxes of vehicles, 
once the frame is processed by the model.  

3. To find out the direction of a tracked vehicle, the 
program computes the difference between a range of 
frames. It does this by first computing the object 
centroid from the bounding boxes using elementary 
geometric techniques. Suppose frame FN  has a centroid 
(xN, yN) then the program computes the pixel difference 
for varying values of N, during the configuration step 
as explained below. This step of the algorithm was 
inspired from [5]. 

4. In the first few “configuration” seconds, the direction 
of all vehicles is tracked. The movement of a centroid 
assigned an ID is tracked using the Euclidean distance 
algorithm and is used in the next step. 

5. To determine whether the car is traveling on the right 
or wrong side of the road, the program creates an 
imaginary divider or median in the road based on the 
average extreme positions of vehicles moving in 
respective directions. Due to the jittery nature of the 
initial object detection algorithm, the bounding boxes’ 
mini oscillations mean that a slope cannot be calculated 
easily and therefore the median calculated is assumed 
to be vertical. In left side driving nations, whatever 
vehicles moving upwards and to the right of the median 
are considered as violations. 

6. The vehicles moving in the wrong direction are 
considered as violations and these violations are 
uploaded to the Firebase database. 

7. Finally, using ALPR, the violator's license plate is 
found and matched with the police database and a 
challan is generated with the photo evidence. 

8. The following dataset is used by the proposed work: 

-  Object detection image dataset for training : OIv6  
[15] 

Other CCTV camera videos found on YouTube are 
used to run validation of wrong side detection. 

B. Implementation Details 

Language used in the entire project is Python (3.7+). Tools used 
in this project include: 

● Darknet : It is an open-source neural network framework. It 
is simple to setup and install, quick and supports GPU as 
well as CPU computation.  

● Google Colab : This is a product from Google Research that 
provides a Virtual Environment for the execution of Python 
Code on a reasonably fast GPU to carry out ML-related 
tasks anywhere on the internet. 

● Anvil : This is used to convert a Colab’s model into a web 
application. This was used as the front-end of the project. 

● Firebase Firestore : The cloud database used to store and 
send the detections to the front-end of the application. 

Anvil and Colab have been used in order to use a moderately 
powerful GPU along with a functional frontend. This project can 
be implemented without these tools on a powerful machine, and 
the above is done for demonstration purposes only. 

Although the model does not follow any specific data 
preprocessing steps, the dataset being used is provided by Open 
Images v6 (via Google), which provides annotated datasets to 
the specific classes needed. In this model,  a “Cars” dataset was 
used, which was annotated by OIv6 for object detection. 
Collecting the dataset from Google's Open Images Dataset and 
then using the OIDv4 toolkit to generate the required labels is 
simple, efficient and elementary. The label contains the 
annotation labels. The labels that the toolkit gives us aren’t in 
the prescribed YOLOv4 format. Using various helper programs, 
the labels were successfully converted to the required format. 
One has to change the label filename to utilise it along with the 
algorithm during the training process. [15] 

The technique chosen to work with on this model is a Validation 
data split. To avoid re-substitution errors, the data was split into 
2 different classes, namely a training dataset as well as a testing 
dataset. The model is built on a 70/30 split. The technique used 
here is referred to as the “hold-out validation technique”. There 
may be a likelihood that a non-uniform distribution of distinct 
categories of data is found in training and validation dataset. To 
rectify this issue, the training dataset and the test dataset are 
created with equally distributed classes of data (referred to as 
stratification). 

4. RESULTS AND ANALYSIS 
 

For testing purposes, the model was verified with the help of an 

Anvil Frontend and a Colab backend as mentioned earlier. The 

input video was fed as a YouTube video link. Vehicles travelling 

in the wrong direction on the road were edited into the video. On 

clicking the submit button on the frontend, an output was 

displayed on the screen. Violating vehicles’ pictures were also 

stored on the Firebase database for proof. Some of the output 

obtained is shown below. 
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Figure 2. Project running on an Anvil Frontend   

 

 

 
 Figure 3. Picture of the violation stored in Firebase 

 

 

 Figure 4. One of the violations stored in Firebase (red colored 

centroid indicates a violation and the blue line is the imaginary 

median automatically constructed by the program) 

 

 Figure 5. Another violation stored in Firebase 

 

 

In Figure 4 and 5, it should be noted that the car whose centroid 

id is 42 took time to turn red from green. This is to prevent the 

system from penalising parked or slow moving cars. 

The model trained resulted in an astonishingly high accuracy, 

more than 95% for the validation input provided, exceeding 

many expectations. However, the project still returns rare cases 

of false positives during certain traffic jams. Overall, one can see 

that the model is performing excellently and can be used with a 

front end. 

A front end was later on added for demonstration purposes. 

Anvil was used for this to convert the Colab notebook to a 

working web-app by passing data through firebase storage. A 

manual video was considered for testing and a Confusion Matrix 

was created. 

TABLE 1.    CONFUSION MATRIX FOR WRONG SIDE DRIVING DETECTION 

 

Total = 250 Predicted Wrong 

Side Driving 

Predicted Right Side 

Driving 

Actual Wrong Side 

Driving 

31 1 

Actual Right Side 

Driving 

10 208 

 

From the confusion matrix (Table 1), one can calculate attributes 

like Accuracy, Misclassification and Precision. 

 

Accuracy = (TP+TN)/Total = (239)/250 = 95.6% 

 

Misclassification= (FP+FN)/Total = 11/250 = 4.4% 

 

Precision = TP/(TP+FP) = 40/41 = 97.5% 

 

The model’s learning curve was plotted which was fit perfectly 

to not overfit over the training data. The warning instructions for 

the training process are given by the official Darknet Git repo. 

[4] 

 

      Figure 6. Learning Curve of the YOLOv4 model during the 

training process   
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Figure 2 shows the learning curve of a model which after around 

2000 iterations straightens on the curve indicating its not 

learning at a pace worth training. This plots to an accuracy of 

around 0.7 to 1. Hence when the model was trained, the training 

was stopped sooner without overdoing it. 

 

4. LIMITATIONS 
The project has met the expectations sought out, but it certainly 

has faced several limitations along the way:. 

1. The sensitivity of the camera input required : The input 

clipping that the model takes in must be from a fixed 

and stable CCTV. This rules out Dashboard cameras, 

rotating surveillance cameras, etc. Or else, the model 

struggles to find the divider resulting in failure of lane 

separation. 

2. Camera orientation: As discussed in the methodology 

section, the CCTV camera must be straight and parallel 

with respect to the road since the imaginary divider 

does not have any slope. 

3. False Positives : The model sometimes results in false 

positives,  due to blurred footage or due to improper 

detections. Although it isn’t very often, it does occur 

once in a while.  

4. Speed of response from Anvil : As the project 

requirements don’t mention a custom made front-end, 

Anvil was utilised to use the Colab notebook on a 

Webapp. And as expected, the response speed isn’t as 

desired. However, the project’s core functionality is as 

fast and lightweight as expected. 

 

5. CONCLUSION AND FUTURE SCOPE 
The solution proposed is completely automated and doesn’t need 

any manual intervention. The current system is rusty as it 

requires a traffic police or a certain person to keep tabs on the 

traffic through the footage, which makes it inefficient, not so 

accurate,  and rather time consuming. The model brings in a 

detection accuracy of around 95% and a real time viable lane 

detection accuracy.  

The model has accomplished the goals sought out  with great 

accuracy. Like most other projects, there is room for future 

enhancements as well. A few ideas can be explored: 

● Making a custom Front-end for the project. 

● Improving efficiency of the model by better training. 

● Customizing the simplistic centroid tracking algorithm 

(which currently uses Euclidean distances). 

Considering all these future enhancements left and constraints 

faced while implementation, this doesn’t mean the goals sought 

out were met to the finest extent possible. We are keen on 

working on this project to the next level in the future by 

continuously fine-tuning the code. 

Our code can be found at the following link: 

https://github.com/sriramcu/yolov4_wrong_side_driving_detecti

on 
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