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Abstract - Flow through porous medium has been a center of 

attention since last decade obviously due to its extensive 

applications in the field of engineering especially thermal 

insulations, contemporary building walls, safety of nuclear 

reactors, geophysical phenomes etc. Plethora of studies have 

been performed to understand the porous medium flow in 

rectangular and cylindrical shaped enclosure. However, 

numerous engineering applications involve spherical shaped 

porous media flow which cannot be, in any circumstances, 

ignored. Comparatively lesser number of studies are performed 

in spherical porous media flow. The current study is an effort in 

this direction to compile most of the relevant works performed in 

spherical porous enclosures and thereby comprehend the 

importance, extent of research and future scope in this domain 

of porous media flows.  

 
Key Words: Porous Medium, Thermal Insulation  

 

1. INTRODUCTION 
 

Porous media flows have been an important vertical in thermal 

and fluids engineering since porous nature of a substance is 

inherent and unavoidable. Industrially, porous materials may be 

seen in soil mechanics, geophysics, drying, filtration, material 

science, solar collector, thermal insulations, acoustics etc. Table 

(1) enlists different type of porous media flows in various 

domains of engineering sciences. The importance of porous 

media in thermal applications have been crucial as well. This 

sort of applications can primarily be split into two categories; 

those based on enhancement heat transfer and those on 

suppression heat transfer. Thermal insulations, for example, is 

related to heat transfer suppression whereas grain storage, on 

other hand, is related to augmentation. Since many engineering 

applications have porous structure which may or may not be 

critical to the systems performance, the study of its thermal and 

fluid flow characteristics become increasingly important. The 

development of transport phenomena, particularly, in porous 

medium have flashed way back in mid-nineteenth century after 

Darcy [1] experimentally quantified the bulk resistance to flow 

of a liquid through porous bed and established a relationship 

between pressure difference across a porous media and 

discharge rate and is well-known today as Darcy’s law.   

 

 

 
Table -1: Applications of porous media flow 

 

Sr. 

No. 

Application 

Domain 

Type of Porous 

Structure 
Reference 

1 Biomechanics Bones, human lung and soft 

tissues modeling  
[2,3] 

2 Mechanical Electronic cooling systems, 
fire safety, solar systems, heat 

exchangers, thermal 

insulators, sound, isolation, 
automobiles, refrigerators, 

combustion, capillary-

assisted thermal technology, 
safety analysis of nuclear 

reactor 

[4-8] 

3 Material 

Science 

Metal foams and polymers [9] 

4 Biological Blood perfusion in tissues, 
Modeling of bio-heat transfer 

in tissues, photo thermal 
therapy 

[10,11] 

5 Production Oil recovery, Oil production, 

drying and liquid composite 

molding, battery electrodes 
and other electrochemical 

systems 

[12] 

6 Chemical Fuel cell membrane, Packed-
bed reactor, bacterial 

[13-15] 

7 Geophysics Aquifer’s consolidation, 

melting of ice layers, or flow 

in magma chambers, disposal 
of waste, sub-surface 

contamination 

[16,17] 

8 Civil Leakage through walls of 
water dams or reservoirs, 

protective casing for steel in 

building and construction 

[18] 

 
      In later half of nineteenth century, the effective conductivity 

of porous medium eas experimentally calculated by Maxwell 

empirically and internal flow transition in porous media were 

extensively studied by Reynold performed. This gave a new 

stimulus of research in this field. The early half of twentieth 

century has seen the works of several fundamental yet important 

aspects of porous media flows in form of, Prandtl’s external 

flow transition experiment, Carman-Kozeny permeability 

equation, Knudsen’s slip-flow experiment. Nonetheless, most of 

the attention in porous media flow research was caught in the 

mid-twentieth century due to the expounding results reported by 
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Brinkman [19, 20] modification of Darcy’s law, Ergun and 

Orning [21] model to constitute inertial effect, interfacial 

boundary condition by Beavers and Joseph [22] and study of 

multi-phase flow in porous media by Whitaker [23]. 

 

Depending upon the application, the study of porous media flow 

can be categorized, broadly, based upon the domain shape viz., 

rectangular, cylindrical and spherical porous enclosures. 

Moreover, some other shapes have also been studied in literature 

like, trapezoidal, triangular etc. Table (2) enlists the works 

reported based upon various porous enclosure shapes. 

 
Table-2: Some significant works based upon various porous 
domain shapes. 

 

MATHEMATICAL MODEL 
 

Most of the works available in literature on spherical porous 

media are numerical simulation type. Hardly any work is found 

to be of experimental in nature. Following are the patterns of 

mathematical modelling that have been used to model spherical 

porous media flows. 

 

ASSUMPTION 
 

The mathematical modelling of spherical porous medium is 

subject to following assumptions. Though not imperative, these 

assumptions have been commonly found in the literatures [47, 

50, 51, 53, 57]. The mathematical model assumes Newtonian 

type of fluid, laminar flow, 2D and in-compressible flow. 

Viscous dissipation, compression effects and radiation are 

ignored. All the properties of fluid are maintained constant apart 

from density which is approximated by Boussinesq equation and 

also temperature dependent viscosity. The fluid and the solid 

matrix of the porous medium are supposed to be in local thermal 

equilibrium with each other. The porous medium is assumed to 

be isotropic and homogeneous. The fluid viscosity is same as the 

effective viscosity, while the effective thermal conductivity of 

the fluid-saturated porous medium is equivalent to the fluid’s 

thermal conductivity. 

 

GOVERNING EQUATIONS 
 

If u, v, w are the components of the velocity field and T is the 

temperature, The governing equations consisting of conservation 

of mass, momentum and energy are given as, 

Darcy Model [48, 49, 51, 53, 55]: 

 

 
 

 
 

 

 

 

Density variation according to Boussinesq approximation is 

given by, 

 
 

Brinkman Model [50, 56, 58]: 

 

 
 

 
 

 

 

 
 

 

 

 
 

Some non-dimensional parameters used in this equations for 

converting it into dimensionless equations are, 

 

 

Local & average Nusselt numbers, to quantify the heat transfer 

rate may be defined as, 

 

 

Here, rr is the radius ratio defined as ratio of outer to inner 

radius of sphere, R is the dimensionless radial parameter. 

Average Nusselt number is evaluated using numerical 

integration of local Nusselt number by Simpson’s 1/3rd rule 

 

 

BOUNDARY CONDITIONS 

 
For annulus based geometry, generally, there are two surfaces on 

which boundary conditions are imposed. The thermal boundary 

conditions levied on the physical domain are uniform relative to 

angular coordinate. Thus, symmetrical plane may be assumed to 

exist at the plane which breaches the annulus into equal halves. 

The computational domain thus includes only half of the 

spherical domain. Usually, the inner surface may be considered 

Rectangular Cylindrical Spherical 

[24-38] [39-47] [48-60] 
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as hot while outer surface as cold. In dimensionless terms for 

Darcy flow model, these boundary conditions are as follows, 

 

 

 

 
 

In dimensionless terms for Darcy-Brinkman flow model, these 

boundary conditions are as follows, 

 

 

 

 

 

 
 

Here, ψ and Ω is stream function and vorticity respectively given 

as, 

 

 

 

In case of transient model, the initial conditions may be written 

as, 

 

Here,  is non-dimensional time parameter. 

 

NUMERICAL METHODS 

 
The solution to above mentioned coupled partial differential 

equations have been solved in numerous ways be various 

authors. Perturbation expansion method [51], Successive 

Accelerated Replacement (SAR) scheme [49, 50], Least square 

Methods [48], Successive line over-relaxation method [47] have 

been utilized widely. For discretization of grid and governing 

equations, modified Sorenso’s method have been used for 

generating orthogonal grid along the boundary [47]. Apart from 

this, Grid system and Weighing Function Scheme (WFS), finite 

difference method has been widely used.  The range of Rayleigh 

number varies as per the problem statement. However, following 

are the range of parameters generally implemented in literature, 

Rayleigh number (20 - 80000), Darcy number (0.1 – 0.00001), 

Prandtl number (150 – 750), Radius Ratio (1 – 3). 

 

HEAT TRANSFER RESULTS 
 

Nusselt number is the most common quantitative parameter 

calculated to estimate the rate of heat transfer of the system. 

Apart from this, to evaluate the fluid flow, value of maximum 

absolute stream function is also noted.  

 

Table-3: Various values of Nusselt number reported 

 
Ra Nu Ref. 

10 1.017 (rr = 2) [61] 

 1.06 (rr = 2) [62] 

 1.04 (rr = 2) [63] 

 1.04 (rr = 2) [50] 

30 1.36 (rr = 2) [62] 

 1.31 (rr = 2) [63] 

 1.26 (rr = 2) [49] 

50 1.74 (rr = 2) [62] 

 1.7 (rr = 2) [63] 

 1.57 (rr = 2) [50] 

75 2.10 (rr = 2) [62] 

 2.11 (rr = 2) [63] 

 1.94(rr = 2) [49] 

100 2.35 (Da = 0.01) [50] 

200 2.74 (rr = 2) [61] 

500 4.4 (rr = 3) [49] 

1000 6.1(rr = 3) [50] 

 

CONCLUSION 

 
The current review paper has collected all the relevant details 

viz., governing equations, boundary conditions, numerical 

methods, heat transfer results, applications on study of spherical 

porous media flows whichever were available and it may not be 

a hyperbole to summarize that particularly this domain of porous 

media flow has a considerable hiatus in research. Although flow 

through porous media has widely been the focus of study since 

last two decades, its study in spherical domain is still very 

scarce. Applications involving spherical porous media are not 

limited. From food storage, spherical tanks, safety of nuclear 

reactors, geophysical application etc. are some of the 

applications where spherical porous media are frequently 

encountered. Almost all the studies reported in literature are of 

numerical and computational in nature. Experimental data have 

not been benchmarked as regards to spherical porous media 

flows. Thereby, a lot of scope is available to explore, analyze 

and experiment in porous media flow through spherical 

geometry. 
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